
User Manual
iManager & Software
API

Copyright
This document is copyrighted, 2009, by Advantech Co., Ltd. All rights reserved.
Advantech Co., Ltd. Reserves the right to make improvements to the products
described in this manual at any time. Specifications are subject to change without
notice.

No part of this manual may be reproduced, copied, translated, or transmitted in any
form or by any means without prior written permission of Advantech Co., Ltd. Infor-
mation provided in this manual is intended to be accurate and reliable. However,
Advantech Co., Ltd., assumes no responsibility for its use, or for any infringements
upon the rights of third parties which may result from its use.

All the trademarks of products and companies mentioned in this data sheet belong to
their respective owners.

Copyright © 2009 Advantech Co., Ltd. All Rights Reserved

Part No. 200600SW00 Edition 1
Printed in Taiwan December 2009
iManager & Software API User Manual ii

Contents
Chapter 1 Introduction..1

1.1 Intelligent Management for COM modules.. 2
1.2 Benefits ... 2

Chapter 2 Environments.......................................3
2.1 iManager Utility ... 4

2.1.1 Hardware .. 4
2.1.2 Operating Systems ... 4

2.2 iManager API: ... 4
2.2.1 Hardware .. 4
2.2.2 Operating Systems ... 4

Chapter 3 Installation..5
3.1 iManager Utility ... 6

Chapter 4 iManager Utility....................................7
4.1 System Information ... 8
4.2 Hardware Monitor (HWM) ... 9
4.3 Advanced WatchDog .. 10
4.4 Settings ... 12
4.5 Alarm... 13
4.6 SmartFan .. 14

Chapter 5 Installing the iManager API...............15
5.1 Microsoft Windows 2000/ XP/ XP Embedded ... 16
5.2 Microsoft WindowsCE ... 16
5.3 Linux.. 16
5.4 QNX .. 16
5.5 WindRiver VxWorks .. 16

Chapter 6 Programming Overview17
6.1 Generic Board information .. 18
6.2 Watchdog (WDog) Functions Class .. 20
6.3 GPIO (I/O) functions.. 23
6.4 SMBus Functions .. 23
6.5 IIC Functions ... 24
6.6 VGA Control (VC) Functions ... 24
6.7 Hardware Monitoring Functions .. 25
6.8 Storage Area Types .. 30

Chapter 7 SUSI API Programmer's
Documentation...................................31
iii iManager & Software API User Manual

7.1 SusiDllUninitialize ... 32
7.2 SusiDllIsAvailable ... 33
7.3 SusiDllInstall ... 33
7.4 SusiDllGetDrvVersion ... 33
7.5 SusiDllGetLastError .. 34
7.6 SusiDllInstall ... 34
7.7 SusiBoardCount.. 35
7.8 SusiBoardOpen... 36
7.9 SusiBoardOpenByNameA .. 37

7.10 SusiBoardOpenByNameW ... 37
7.11 SusiBoardClose .. 38
7.12 SusiBoardGetNameA.. 38
7.13 SusiBoardGetNameW... 39
7.14 SusiBoardGetInfoA ... 39
7.15 SusiBoardGetInfoW .. 40
7.16 SusiBoardGetBootCounter ... 40
7.17 SusiBoardGetRunningTimeMeter ... 41
7.18 SusiWDogCount ... 41
7.19 SusiWDogIsAvailable.. 42
7.20 SusiWDogTrigger.. 42
7.21 SusiWDogGetConfigStruct ... 42
7.22 SusiWDogSetConfigStruct.. 43
7.23 SusiWDogSetConfig ... 43
7.24 SusiWDogDisable ... 44
7.25 SusiWDogGetInfo ... 44
7.26 SusiWDogSetIntCallBack ... 45
7.27 SusiIOCount.. 45
7.28 SusiIOIsAvailable.. 46
7.29 SusiIORead... 46
7.30 SusiIOWrite... 47
7.31 SusiIOGetDirectionCaps... 47
7.32 SusiIOGetDirection ... 48
7.33 SusiIOSetDirection.. 48
7.34 SusiSMBusScanDevice .. 49
7.35 SusiSMBusReadQuick.. 49
7.36 SusiSMBusWriteQuick.. 50
7.37 SusiSMBusReceiveByte ... 50
7.38 SusiSMBusSendByte.. 51
7.39 SusiSMBusReadByte.. 51
7.40 SusiSMBusWriteByte.. 52
7.41 SusiSMBusReadWord .. 52
7.42 SusiSMBusWriteWord .. 53
7.43 SusiI2CCount.. 53
7.44 SusiI2CType ... 54
7.45 SusiI2CIsAvailable .. 54
7.46 SusiI2CRead... 55
7.47 SusiI2CWrite ... 55
7.48 SusiI2CReadRegister ... 56
7.49 SusiI2CWriteRegister.. 56
7.50 SusiI2CWriteReadCombined .. 57
7.51 SusiI2CGetMaxFrequency.. 57
7.52 SusiI2CGetFrequency... 58
7.53 SusiI2CGetMaxFrequency.. 58
7.54 SusiVgaCount ... 59
7.55 SusiVgaGetBacklight .. 59
7.56 SusiVgaSetBacklight... 60
7.57 SusiVgaGetInfo... 60
7.58 SusiTemperatureCount... 61
7.59 SusiTemperatureGetInfo... 61
7.60 SusiTemperatureGetCurrent... 62
iManager & Software API User Manual iv

7.61 SusiTemperatureSetLimits.. 62
7.62 SusiFanCount ... 63
7.63 SusiFanIsAvailable.. 63
7.64 SusiFanSetConfigStruct.. 63
7.65 SusiFanGetConfigStruct ... 64
7.66 SusiFanGetInfo ... 64
7.67 SusiFanGetCurrent ... 65
7.68 SusiFanSetLimits .. 65
7.69 SusiVoltageCount ... 66
7.70 SusiVoltageGetInfo ... 66
7.71 SusiVoltageGetCurrent ... 67
7.72 SusiVoltageSetLimits .. 67
7.73 SusiStorageAreaCount ... 68
7.74 SusiStorageAreaType ... 68
7.75 SusiStorageAreaSize .. 69
7.76 SusiStorageAreaBlockSize ... 69
7.77 SusiStorageAreaRead .. 70
7.78 SusiStorageAreaWrite... 70
7.79 SusiStorageAreaErase.. 71
7.80 SusiStorageAreaEraseStatus ... 71
7.81 SusiStorageAreaLock ... 72
7.82 SusiStorageAreaUnlock .. 73
7.83 SusiStorageAreaIsLocked... 73
v iManager & Software API User Manual

iManager & Software API User Manual vi

Chapter 1

1 Introduction

1.1 Intelligent Management for COM modules.
Advantech’s new COM module comes equipped with “iManager” - a micro controller,
providing embedded features for system integrators. Embedded features have been
moved from the OS/BIOS level to the board level, to increase reliability and simplify
integration.
iManager runs whether the system is powered on or off; it can count the boot times
and running hours of the device, monitor device health, and provide an advanced
watchdog if errors happen.
iManager also comes with a secure EEPROM for storing important security ID or
other information.
All the embedded functions are configured by a utility. Advantech has done all the
hard work for our customers with the release of a suite of Software APIs (Application
Programming Interfaces). These provide not only the underlying drivers required but
also a rich set of user-friendly, intelligent and integrated interfaces, which speeds
development, enhances security and offers add-on value for Advantech platforms.

1.2 Benefits
Simplify Integration
Unique embedded functions are built-in to the iManager’s uniform set of APIs,
such as watchdog, monitoring, smart battery, and so on.
Offers a multi control interface for easy integration with all kind of peripherals,
we have Standard I2C, SMBus and multi GPIO.
Enhance Reliability
Advanced watchdog, smart fan, hardware monitoring, CPU throttling; provided
by eBrian independent from OS.
Advantech eSOS is able to issue an alarm to customers when system crashes
and further action can be taken from the remote side (Such as recovering the
OS)
Secure the System
iManager provides an encryption space for customer data storage such as
secure key for HDD lock, user ID and password, security ID to protect your
application
Easy System Upgrade
Uniform and OS independent interface for cross hardware platforms
Uniform API across different embedded OSs.
Easily upgrade to other COM modules or different OS.
iManager & Software API User Manual 2

Chapter 2

2 Environments

2.1 iManager Utility

2.1.1 Hardware
This utility supports only Advantech ePlatforms with iManager module; please see
the release notes to check the support list before using it.

2.1.2 Operating Systems
Windows XP Professional
Windows XP Embedded
Windows Embedded Standard 2009
– SUSI V4.0 driver and API are required
– Dot Net Framework 2.0 required

2.2 iManager API:

2.2.1 Hardware
The Software API supports only Advantech ePlatforms with iManager module; please
see the release notes to check the support list before using it.

2.2.2 Operating Systems
Windows XP Professional
Windows XP Embedded
Windows Embedded Standard 2009
– SUSI V4.0 driver and API are required
– Dot Net Framework 2.0 required
iManager & Software API User Manual 4

Chapter 3

3 Installation

3.1 iManager Utility
Installation is not required; just copy all required files to a specific folder, then click
"iManager.exe" to run. It will dynamically link the libraries. The required files are:
1.iManager.exe Main program
2.PieChartControls.dll iManager's library (Only for iManager.exe AP)
3.Susi.dll iManager's external export Library (API)
4.SusiCore.dll iManager's internal Library
5.SusiCore.sys iManager's Driver
iManager & Software API User Manual 6

Chapter 4

4 iManager Utility

iManager is a GUI utility which runs in Windows environment, It can be used to mon-
itor the entire system and to popup a warning message in the system tray when
something critical happens
Functions include: System, Hardware Monitor, Advanced Watchdog, Settings, Alarm
and Smart Fan.

4.1 System Information
iManager can gather and record system information for users to manage their
devices, including platform information, memory information, operating system infor-
mation and hard disk information.

Platform information: The following information can be recorded on an Advantech
board:

BIOS Version: The version of BIOS file.
SUSI Version: This is the driver version.
iManager Firmware Version: This is the controller firmware version
Model Name: This is platform name
Serial Number: This number is input by the factory, used for sales tracking and
service.
Manufacturer: The creator of this platform
Boot Counter: Boot up times
Running Hours: Running times in hours
iManager & Software API User Manual 8

C
hapter 4

iM
anagerU

tility
4.2 Hardware Monitor (HWM)
The hardware monitor contains three features: temperature, voltage and fan speed. It
monitors critical items including power supply voltage, CPU & system fan speed, and
CPU & system temperature. These items are important to the operation of the sys-
tem because when errors happen, they may cause permanent damage to the PC. If
an monitored item is outside its normal range, a warning message will pop up to
remind the user to take corrective actions.
9 iManager & Software API User Manual

4.3 Advanced WatchDog
In general, a watchdog timer (WDT) is a function that performs a specific operation
after a certain period of time when something goes wrong with the system.
A watchdog timer can be programmed to restart the system after a certain time
period when a program or computer fails to respond or hangs.
Since many customers like to program different responses to different events, Advan-
tech has designed an advanced watchdog which consists of both a single stage and
a multi-stage timer.

Single stage: In this stage, you can set delay time, refresh time, timeout in millisec-
onds and event type.

For example:

Type 3000 (3 sec.) in the "Timeout" text box, 5000 (5 sec.) in the "Refresh" text box
and optionally type 5000 (5 sec.) in the "Delay" text box. Click the "Start" button.
Because the refresh time is longer than the timeout time (5 > 3), the watchdog can-

not get response and will execute the event by issuing an IRQ event.
iManager & Software API User Manual 10

C
hapter 4

iM
anagerU

tility
Multi-stage: The multi stage watchdog allows up to 3 actions in each stage; one can
set a different timeout in milliseconds based on event type.

For example:
Type 5000 (5 sec.) in the “Delay” box, Type 5000 (5 sec) in “Refresh”, then for each
stage, set the "Timeout" text box to 5000 (5 sec).
For “Stage 1”, set the event type to NMI/IRQ, for “Stage 2”, set the event type to SMI/
SCI, and for “Stage 3”, set the event type to Reset
Now, click "Start". The advanced watchdog will run the 3 stages. An application can
be written to receive the events.

There are four types to select from:

NMI/IRQ
SMI/SCI
Reset
Power

Note! Valid event types will change for different platforms due to hardware lim-
itations. Please reference the hardware platform user manual to get
detailed information.
11 iManager & Software API User Manual

4.4 Settings
The settings page is used to set the minimum and maximum threshold values for
temperature, fan speed and voltages. When the real value is outside this range, an
error will be recorded on the alarm page.
In “Setup”, pop-up errors and the monitoring utility can be selected to run at system
startup.
iManager & Software API User Manual 12

C
hapter 4

iM
anagerU

tility
4.5 Alarm
On the alarm page, all errors are tracked by time and status
13 iManager & Software API User Manual

4.6 SmartFan
iManager’s design provides a SmartFan for the user to pre-define the fan speed
based on the system temperature. There are three modes for selection:

Disable: Disable the SmartFan
Full Speed: Fan always runs in full speed.
Advanced: Users can set the "Lower Temperature Limit" (Fan speed = 0),
"Lower Temperature Limit+ Range" (FAN PWM Minimum) and "Higher Temper-
ature Limit" (FAN PWM Maximum). The SmartFan cycle will operate automati-
cally; see Figure-8.

In Advanced Mode, when the temperature for a zone is between the "Lower Temper-
ature Limit" and "Temperature Limit + Range", the speed of the fan assigned is deter-
mined as follows:
When the temperature reaches the “Fan Temp Limit” for a zone, the PWM output
assigned to that zone will be “Fan PWM Minimum”.
Between “Lower Temperature Limit + Range” and “Higher Temperature Limit”, the
PWM duty cycle will increase linearly according to the temperature, as shown in the
figure below. The PWM duty cycle will be 100% at “Higher Temperature Limit”.
iManager & Software API User Manual 14

Chapter 5

5 Installing the iManager
API

The iManager API is easy to install. You don't need to run the setup program. Sup-
ported operating systems are:

Microsoft® Windows NT/2000/XP/XP Embedded
Microsoft® Windows CE
Linux
QNX®
VxWorks

5.1 Microsoft Windows 2000/ XP/ XP Embedded
To use the iManager API, just copy the following files to your application folder. There
is no need to do an installation.
The files required are:
1. Susi.dll iManager's external export Library (API)
2. SusiCore.dll iManager's internal Library
3. SusiCore.sys iManager's Driver

5.2 Microsoft WindowsCE
Windows CE 5.0: Double-click the iManager installation file and add it from catalog
items.
Windows CE 6.0: Extract the contents of the archive, iManager, to $(WINCE-
ROOT)\public\ and add it from catalog items.

5.3 Linux
Extract the contents of the archive linux_susi.tar.gz to a driver folder on the Linux tar-
get and run the shell file: susi_install.sh. On the Linux target, the kernel version and
distribution should match the Advantech release. Refer to the readme file for a
detailed description of how to setup the driver.

5.4 QNX
Extract the contents of the archive: qnx_susi.tar.gz to the driver folder (/lib/dll) on a
QNX target. Refer to the readme file for a detailed description of how to setup & use
the driver.

5.5 WindRiver VxWorks
The API for VxWorks is provided by request. For more information contact our techni-
cal support department
iManager & Software API User Manual 16

Chapter 6

6 Programming
Overview

The SUSI API functions are based on a dynamic library, so they can be installed and
used at run time.

Header Files
SUSI.H includes the API declaration, constants and flags that are required for
programming.
DEBUG.H / ERRDRV.H / ERRLIB.H are for debug code definitions.
DEBUG.H - Function index codes
ERRLIB.H - Library error codes
ERRDRV.H - Driver error codes

Library Files

Susi.dll is a dynamic link library that exports all the API functions.
SusiCore.dll is a dynamic link library that talks to the driver.

Demo Program
The SusiDemo program, released with source code, demonstrates how to fully
use iManager APIs. The program is written in C++ and the latest programming
language C#.

Drivers
SusiCore.sys is the driver that controls the hardware.

Initialize the DLL function
Before using the API functions, make a call to SusiDllInitialize to initialize the
library first, then call SusiDllInstall(1) to dynamically load the driver.
After using the API functions, first make a call to SusiDllInstall(0) to dynamically
unload the driver, and then call SusiDllInitialize to uninitialize the library.

6.1 Generic Board information
The iManager has the capability to keep account of all information about your plat-
form. Use the function SusiBoardGetInfo with the SUSIBOARDINFO structure to
easily get the data.

SusiBoardGetInfoA: ASCII code version.
SusiBoardGetInfoW: Unicode version.

SUSIBOARDINFO
unsigned long dwSize

size of this structure itself. please use sizeof(This strucrure name) to set this
value.

unsigned long dwFlags
reserved. Always set to 0.

char szReserved[SUSI_BOARD_MAX_SIZE_ID_STRING]
reserved. Always set to 0.
iManager & Software API User Manual 18

C
hapter 6

P
rogram

m
ing

O
verview
char szBoard[SUSI_BOARD_MAX_SIZE_ID_STRING]
name of Platform.

char szBoardSub[SUSI_BOARD_MAX_SIZE_ID_STRING]
sub name of Platform, extracted from the manufacturing data

char szManufacturer[SUSI_BOARD_MAX_SIZE_ID_STRING]
name of the board manufacturer, usually ADVANTECH.

SUSITIME stManufacturingDate
date of manufacturing

SUSITIME stLastRepairDate
date of last repair

char szSerialNumber[SUSI_BOARD_MAX_SIZE_SERIAL_STRING]
serial number of platform, e.g. 000000000020

unsigned short wBoardRevision
board revision in ASCII notation, major revision in high-byte,
minor revision in low-byte, e.g. 0x4130 for revision A.0

unsigned short wBiosRevision
BIOS revision, major revision in high-byte,
minor revision in low-byte, e.g. 0x0110 for revision 1.10

unsigned short wOemBiosRevision
OEM BIOS revision

unsigned short wFirmwareRevision
firmware revision in ASCII notation, major revision in high-byte,
minor revision in low-byte, e.g. 0x0110 for revision 1.10

unsigned long dwClasses
represents all function classes supported in iManager.

unsigned long dwPrimaryClass
represents primary function class supported in iManager.

unsigned long dwRepairCounter
repair counter

char szPartNumber[SUSI_BOARD_MAX_SIZE_PART_STRING]
part number
19 iManager & Software API User Manual

char szEAN[SUSI_BOARD_MAX_SIZE_EAN_STRING]
EAN code of the platform

unsigned long dwReserved
sub manufacturer of the platform

6.2 Watchdog (WDog) Functions Class
The hardware watchdog timer is a common feature among all Advantech platforms.
In user applications, call SusiWDogSetConfig with specific timeout values to start the
watchdog timer countdown. Meanwhile create a thread or timer to periodically refresh
the timer with SusiWDogTrigger before it expires. If the application ever hangs, it will
fail to refresh the timer and the watchdog reset will cause a system reboot.

There are multiple stage hardware watchdogs in iManager. Use the config function
SusiWDogSetConfigStruct to set each unit's working rule.

The iManager API provides the following functions, which are used to control the
behavior or to get information about the state of the watchdog:

SusiWDogCount
SusiWDogIsAvailable
SusiWDogTrigger
SusiWDogGetConfigStruct
SusiWDogSetConfigStruct
SusiWDogSetConfig
SusiWDogDisable
SusiWDogGetInfo
SusiWDogSetIntCallBack

Mode
The mode defines the major behavior of the watchdog:

SUSI_WDOG_MODE_REBOOT_PC:
Run software reboot when watchdog happens.
SUSI_WDOG_MODE_RESTART_OS:
Trigger power button to run standard shutdown when a watchdog timeout

occurs.
SUSI_WDOG_MODE_STAGED:
Set this mode to use staged mode watchdog.

Operatiing Modes
In staged mode, the watchdog might offer one or more various operating modes:

SUSI_WDOG_OPMODE_DISABLED:
Disable this stage.
SUSI_WDOG_OPMODE_SINGLE_EVENT:
Enable this stage, and send single event when a watchdog timeout occurs.
iManager & Software API User Manual 20

C
hapter 6

P
rogram

m
ing

O
verview
Events
An event is implemented by the onboard hardware during a situation when a watch-
dog timeout occurs. The following events are defined:

SUSI_WDOG_EVENT_INT:
defines a IRQ event.
This event can cooperate SusiWDogSetIntCallBack to insert the call back func-
tion which will auto execute when a Watchdog timeout occurs.
SUSI_WDOG_EVENT_SCI:
defines a SCI event.
SUSI_WDOG_EVENT_RST:
defines a system reset event.
SUSI_WDOG_EVENT_RST:
defines a power button event.

Watchdog Types
The following watchdog types are currently defined:

SUSI_WDOG_TYPE_UNKNOWN:
used when the type is not known.
SUSI_WDOG_TYPE_BC:
the watchdog is implemented via the ADVANTECH onboard controller.
SUSI_WDOG_TYPE_CHIPSET:
watchdog functionality is available only through the board's chipset.

Information Structure
The SusiWDogGetInfo function call is used to get information about the current con-
figuration and state of the watchdog. It takes a pointer to an instance of structure
SUSIWDINFO, which is defined as follows:

SUSIWDINFO
unsigned long dwSize

size of this structure itself. please use sizeof(This structure name) to set this
value.

unsigned long dwFlags
reserved. Always set to 0.

unsigned long dwMinTimeout
value depends on the hardware implementation of the watchdog and speci-
fies the minimum value for the watchdog trigger timeout.

unsigned long dwMaxTimeout
value depends on the hardware implementation of the watchdog and speci-
fies the maximum value for the watchdog trigger timeout.

unsigned long dwMinDelay
value depends on the hardware implementation of the watchdog and speci-
fies the minimum value for the watchdog enable delay.
21 iManager & Software API User Manual

unsigned long dwMaxDelay
value depends on the hardware implementation of the Watchdog and speci-
fies the maximum value for the Watchdog enable delay.

unsigned long dwOpModes
mask of the supported operating modes, see section: Operating Modes.

unsigned long dwMaxStageCount
amount of supported watchdog stages.

unsigned long dwEvents
mask of supported watchdog events, see section: Events.

unsigned long dwType
see section: Watchdog Types.

Configuration
The SusiWDogSetConfigStruct and SusiWDogGetConfigStruct function calls are
used to set and to determine the Watchdog configuration. Both of them take a pointer
to an instance of structure SUSIWDCONFIG which is defined as follows:

SUSIWDCONFIG
unsigned long dwSize

size of this structure itself. please use sizeof(This strucrure name) to set this
value.

unsigned long dwTimeout
specifies the value for the watchdog timeout. It must be in the range, SUSI-
WDINFO: dwMinTimeout, and SUSIWDINFO: dwMaxTimeout. In case of
multiple stages, this value is not used because the configuration occurs
through the appropriate stage structure.

unsigned long dwDelay
value specifies the value for the watchdog enable delay

unsigned long dwMode
current mode, see section: Mode

--Optional parameters for staged watchdog--

unsigned long dwOpMode
mask of the supported operating modes, see section: Operating Modes
value is only used in multistage mode

unsigned long dwStageCount
number of available watchdog stages.
iManager & Software API User Manual 22

C
hapter 6

P
rogram

m
ing

O
verview
value is only used in multistage mode
SUSIWDSTAGE stStages[SUSI_WDOG_EVENT_MAX_STAGES]

array holds the state definition of each defined stage
values are only used in multistage mode

The SusiWDogSetConfig and the config structure contain time values with a millisec-
ond resolution. Timeout is the basic time during which a SusiWDogTrigger function
must be called. Delay adds an initial time period for the first trigger call.

SUSIWDSTAGE
unsigned long dwTimeout

specifies the time value for the affected stage. The value must be in the range
SUSIWDINFO:dwMinTimeout and SUSIWDINFO:dwMaxTimeout.

unsigned long dwEvent
contains the event definition for the affected stage, see section Events.

Triggering
After configuring the watchdog using SusiWDogSetConfigStruct, the application must
continuously call SusiWDogTrigger to trigger the watchdog.

Disabling the Watchdog
An enabled watchdog can be disabled by calling SusiWDogDisable.

6.3 GPIO (I/O) functions
Use iManager API to set IO direction and IO status (Hi | Low).

SusiIOCount
SusiIOIsAvailable
SusiIORead
SusiIOWrite
SusiIOGetDirection
SusiIOSetDirection
SusiIOGetDirectionCaps

6.4 SMBus Functions
SMBus 2.0 compliant protocols are supported in SusiSMBus- APIs :

Quick Command - SusiSMBusReadQuick/SusiSMBusWriteQuick
Byte Receive/Send - SusiSMBusReceiveByte/SusiSMBusSendByte
Byte Data Read/Write - SusiSMBusReadByte/SusiSMBusWriteByte
Word Data Read/Write - SusiSMBusReadWord/SusiSMBusWriteWord

An additional API for probing is also supported:
SusiSMBusScanDevice

The slave address is expressed as a 7-bit hex number between 0x00 to 0x7F, how-
ever the actual addresses used for R/W are

8-bit write address = 7-bit address <<1 (left shift one) with LSB 0 (for write)
23 iManager & Software API User Manual

8-bit read address = 7-bit address <<1 (left shift one) with LSB 1 (for read)

E.g. Given a 7-bit slave address 0x20, the write address is 0x40 and the read
address is 0x41.

All APIs except SusiSMBusScanDevice use the parameter SlaveAddress as an 8-bit
address; users don't need to be concerned about giving it as a read or write address,
since the actual R/W is taken care by the API itself. As an example, using a write
address of 0x41 for the APIs with a write operation or not using it, the correct result
would be still be obtained in either case.

SusiSMBusScanDevice is used to probe whether an address is currently used by
certain devices on a platform. The addresses which are occupied can be determined
by scanning from 0x00 to 0x7f. An example of usage would be scanning for occupied
addresses and avoiding them when connecting a new device; or probing before and
after connecting a new device, to quickly discover its address. The SlaveAddress_7
parameter given in this API is a 7-bit address.

SusiSMBusScanDevice
SusiSMBusReadQuick
SusiSMBusWriteQuick
SusiSMBusReceiveByte
SusiSMBusSendByte
SusiSMBusReadByte
SusiSMBusWriteByte
SusiSMBusReadWord
SusiSMBusWriteWord

6.5 IIC Functions
The APIs here cover IIC standard mode operations with a 7-bit device address:

SusiI2CCount
SusiI2CType
SusiI2CIsAvailable
SusiI2CRead
SusiI2CWrite
SusiI2CReadRegister
SusiI2CWriteRegister
SusiI2CWriteReadCombined
SusiI2CGetMaxFrequency
SusiI2CGetFrequency
SusiI2CSetFrequency

6.6 VGA Control (VC) Functions
SusiVC- functions support LCD brightness adjustment.

SusiVgaCount
SusiVgaGetBacklight
SusiVgaSetBacklight
SusiVgaGetInfo
iManager & Software API User Manual 24

C
hapter 6

P
rogram

m
ing

O
verview
6.7 Hardware Monitoring Functions
The SUSI interface provides access to hardware monitoring functions such as volt-
age sensor, temperature sensor and fan control.
The function calls “SusiVoltageGetCount”, “SusiTemperatureGetCount” and “Susi-
FanGetCount” are used to determine the number of attached sensors per type.
The function calls “SusiVoltageGetInfo”, “SusiTemperatureGetInfo” and “SusiFanGet-
Info” are used to determine the state and the configuration of an attached sensor.
The function calls “SusiVoltageGetCurrent”, “SusiTemperatureGetCurrent” and “Susi-
FanGetCurrent” are used to determine the actual measured value of an attached
sensor.
Sensor Status Flags
The sensor status flags (unsigned long dwFlags), which are defined in the
SUSI*INFO structure, represent the capabilities of the related sensor. The status
flags can be determined using a “Susi*GetInfo” function call. The following sensor
status flags are defined:

SUSI_SENSOR_ACTIVE:
sensor is active and usable
SUSI_SENSOR_ALARM:
sensor supports alarm indication
SUSI_SENSOR_BROKEN:
no physical sensor is attached
SUSI_SENSOR_SHORTCIRCUIT:
sensor has a short circuit

Temperature Sensor Types
The following types of temperature sensors are defined and are dependent on their
location within the system:

SUSI_TEMP_CPU:
sensor which measures CPU temperature
SUSI_TEMP_ENV:
sensor which measures the temperature of the system environment
SUSI_TEMP_BOARD:
sensor which measures board temperature
SUSI_TEMP_BACKPLANE:
sensor which measures temperature on the backplane
SUSI_TEMP_CHIPSETS:
sensor which measures temperature of the chipset
SUSI_TEMP_VIDEO:
sensor which measures temperature of the video chip
SUSI_TEMP_TOPDIMM_ENV:
sensor which measures temperature of the DRAM module on the topside of the
CPU module
SUSI_TEMP_BOTDIMM_ENV:
sensor which measures temperature of the DRAM module on the bottom side of
the CPU module
SUSI_TEMP_OTHER:
25 iManager & Software API User Manual

all other temperature sensors found within the system

Temperature Information Structure
The “SusiTemperatureGetInfo” function call is used to get information about the cur-
rent configuration and state of the temperature sensor. It takes a pointer to an
instance of structure SUSITEMPERARUREINFO, which is defined as follows:

SUSITEMPERATUREINFO
unsigned long dwSize

size of the structure itself, must be initialized with sizeof(SUSITEMPERA-
TUREINFO)

unsigned long dwType
see section: Temperature Sensor Types

unsigned long dwRes
this value defines the granularity of the temperature sensor

unsigned long dwMin
this is the minimum value that can be measured by the sensor

unsigned long dwMax
this is the maximum value that can be measured by the sensor

All temperature values are in units of 1/1000th degree centigrade.

Fan Sensor Types
The following types of fan sensors are defined and are dependent on their location
within the system:

SUSI_FAN_CPU:
sensor which represents the CPU fan
SUSI_FAN_BOX:
sensor which represents the fan on the chassis
SUSI_FAN_CHIPSET:
sensor which represents the fan on the chipset
SUSI_FAN_VIDEO:
sensor which represents the fan on the video chip
SUSI_FAN_OTHER:
all other fan sensors found within the system
iManager & Software API User Manual 26

C
hapter 6

P
rogram

m
ing

O
verview
Fan Information Structure
The “SusiFanGetInfo” function call is used to get information about the current config-
uration and state of the fan control. It takes a pointer to an instance of structure SUS-
IFANINFO, which is defined as follows:

SUSIFANINFO
unsigned long dwSize

size of the structure itself, must be initialized with sizeof(SUSIFANINFO)

unsigned long dwType
see section: Fan Sensor Types

unsigned long dwSpeedNom
this value defines the nominal speed of the fan.
If the value is -1 then the nominal speed is not supported or known

unsigned long dwMin
this is the minimum speed of the fan

unsigned long dwMax
this is the maximum speed of the fan

All fan speed values are in RPM (revolutions per minute).

Fan Speed Control
The “SusiFanSetConfigStruct” function call is used to set fan speed configuration.
You can use this function to control the fan speed easily as you want. It takes a
pointer to an instance of structure SUSIFANCONFIG, which is defined as follows:

SUSIFANCONFIG
unsigned long dwSize

size of the structure itself, must be initialized with sizeof(SUSIFANCONFIG)

unsigned long dwMode
mask of the supported fan modes.

unsigned long dwPWM
pwm speed value, only for SUSI_FAN_MODE_MANUAL mode.

SUSIAUTOFANCONFIG safConfig
pwm automatic algorithm, only for SUSI_FAN_MODE_AUTO mode.

Some modes as shown below can be used in dwMode:
SUSI_FAN_MODE_OFF:
27 iManager & Software API User Manual

disable the fan speed function.

SUSI_FAN_MODE_FULL:
set fan to full speed.
SUSI_FAN_MODE_MANUAL:
set fan speed manually.
SUSI_FAN_MODE_AUTO:
use auto fan mode to control the fan speed.

Auto Fan Speed Mode
When you use the auto fan mode, you have to set “SUSIFANCONFIG:dwMode” in
the “SUSI_FAN_MODE_AUTO” then set “SUSIFANCONFIG:safConfig”. “SUS-
IAUTOFANCONFIG” is defined as follows:

SUSIAUTOFANCONFIG
unsigned long dwZone

temperature sensor you want to refer to

unsigned long dwOpMode
set fan speed module as PWM or RPM

unsigned long dwLowStopTemp
when the temperature drop to the value, the fan will stop.

unsigned long dwLowTemp
when the temperature rises to the value, the fan will work in dwLow* speed.

unsigned long dwHighTemp
when the temperature rises to the value, the fan will work in dwHigh* speed.

unsigned long dwLowPWM
fan speed in low status using the PWM module

unsigned long dwHighPWM
fan speed in high status using the PWM module

unsigned long dwLowRPM
fan speed in low status using the RPM module

unsigned long dwHighRPM
fan speed in high status using the RPM module
iManager & Software API User Manual 28

C
hapter 6

P
rogram

m
ing

O
verview
Voltage Sensor Types
The following types of voltage sensors are defined and are dependent on their loca-
tion within the system:

SUSI_VOLTAGE_BAT_CMOS:
sensor that measures the CMOS battery
SUSI_VOLTAGE_BAT_POWER:
sensor that measures the battery voltage in a mobile system
SUSI_VOLTAGE_5V_S0:
sensor that measures the 5V input voltage
SUSI_VOLTAGE_5V_S5:
sensor that measures the 5V standby voltage
SUSI_VOLTAGE_33V_S0:
sensor that measures the 3.3V onboard voltage
SUSI_VOLTAGE_33V_S5:
sensor that measures the 3.3V standby voltage
SUSI_VOLTAGE_12V_S0:
sensor that measures the 12V onboard voltage
SUSI_VOLTAGE_VCOREA:
sensor that measures the first core voltage (often used as CPU voltage)
SUSI_VOLTAGE_VCOREB:
sensor that measures the second core voltage (often used as memory and
chipset voltage)
SUSI_VOLTAGE_DC:
any sensor that measures an onboard voltage that can't be covered by the pre-
vious definitions
SUSI_VOLTAGE_DC_STANDBY:
any sensor that measures a standby voltage that can't be covered by the previ-
ous definitions
SUSI_VOLTAGE_OTHER:
specified if none of the above can be applied

Voltage Information Structure
The “SusiVoltageGetInfo” function call is used to get information about the current
configuration and state of the voltage control. It takes a pointer to an instance of
structure SUSIVOLTAGEINFO, which is defined as follows:

SUSIVOLTAGEINFO
unsigned long dwSize

size of the structure itself, must be initialized with sizeof(SUSIVOLTAGE-
INFO)

unsigned long dwType
see section: Voltage Sensor Types

unsigned long dwNom
this value defines the nominal voltage of the sensor.
29 iManager & Software API User Manual

If the value is -1 then the nominal voltage is not supported or known
unsigned long dwRes

this value defines the granularity of the voltage sensor

unsigned long dwMin
this is the minimum value that can be determined by the sensor

unsigned long dwMax
this is the maximum value that can be determined by the sensor

All of the above mentioned voltage values are in units of 1/1000th volt.
Storage Area Functions
Each board is usually equipped with a number of different storage areas. They may
be located in Flash, EEPROM, CMOS RAM, etc. A storage area is defined as a por-
tion of physical memory that can provide constant storage for the user's application.
Every SusiStorageArea* function call takes a type or a unit number as a second
parameter, which identifies the affected area.

6.8 Storage Area Types
The storage areas are distinguished depending on their location in memory:

SUSI_STORAGE_AREA_EEPROM:
provides access to the user eeprom
SUSI_STORAGE_AREA_FLASH:
provides access to the flash
SUSI_STORAGE_AREA_CMOS:
provides access to the CMOS
SUSI_STORAGE_AREA_RAM:
provides access to the user RAM
SUSI_STORAGE_AREA_UNKNOWN:
this type is used to determine all installed areas (not just a certain type) during a
SusiStorageAreaCount call

During any “SusiStorageArea*” function call, the pure type is located in the high word
and the enumerated unit number within that pure type (if more units of the same type
exist) is located in the low word of parameter dwUnit.
iManager & Software API User Manual 30

Chapter 7

7 SUSI API
Programmer's
Documentation

The iManager API provides access to ADVANTECH specific board information and
features.
Return Values
Unless they return a count or version number, all SUSI* functions return 1 for suc-
cess and 0 for failure. Other return values are stored in pointers passed to the func-
tion.

Information Structures
The API defines several information structures in susi.h They are used to store the
returned values during Susi*GetInfo calls. Before using these structures, the dwSize
entry of each info structure must be initialized with the size of the structure itself
(sizeof(SUSI*INFO)). This provides independence between the application and the
library if the structure is extended in future releases of the library.

Unit Numbers
Almost all function calls take a unique unit number that is used to identify a dedicated
unit. Usually the unit number is between 0 and the return value -1 of the related
Susi*Count function call. It can be taken as an index for devices of the same type.

7.1 SusiDllUninitialize
Uninitialize the iManager API Library.

SUSIRET_BOOL SusiDllUninitialize(void);

Parameters
None.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Before an application terminates, it must call SusiDllUninitialize if it has success-
fully called SusiDllInitialize. Calls to SusiDllInitialize and SusiDllUninitialize can be
nested but must be paired.
iManager & Software API User Manual 32

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.2 SusiDllIsAvailable
Checks if the iManager API library has already been initialized.

SUSIRET_BOOL SusiDllIsAvailable(void);

Parameters

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Checks if the iManager API library has already been initialized by a prior call to
function SusiDllInitialize.

7.3 SusiDllInstall
Retrieve the version numbers of iManager Library.

SUSIRET_BOOL SusiDllInstall(int install);

Parameters
install
[in] 1 - installs the low level SUSI driver

0 - removes the low level SUSI driver

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
This function can be used to install the low level iManager driver if a prior call of
SusiLibInitialize failed.
Keep in mind that you might need administrative privileges for executing this func-
tion successfully.

7.4 SusiDllGetDrvVersion
Retrieve the version numbers of iManager low level driver.
SUSIRET_ULONG SusiDllGetDrvVersion(void);

Parameters

Return Value
version of the low level SUSI driver.

Remarks
33 iManager & Software API User Manual

7.5 SusiDllGetLastError
This function returns the last error code value.

SUSIRET_ULONG SusiDllGetLastError(void);

Parameters
None

Return Value
description error code
generic error -1 (0xFFFF FFFF)
invalid parameter -2 (0xFFFF FFFE)
function not found -3 (0xFFFF FFFD)
read error -4 (0xFFFF FFFC)
write error -5 (0xFFFF FFFB)
timeout -6 (0xFFFF FFFA)

Remarks
Returns the last known error code of the low level iManager driver. Notice that
this function really delivers the code of the last known iManager driver error and
not the result of the last iManager API function call. A succeeding iManager API
call doesn't affect the return value of this function.

7.6 SusiDllInstall
Set the last error code's buffer location.

SUSIRET_BOOL SusiDllSetLastErrorAddress(unsigned long *pErrNo);

Parameters
pErrNo buffer where the error code will be stored

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
With this function it's possible to specify a local memory location in the context of
the application where the last error code will be stored. It provides a convenient
way of implementing error handling without calling the SusiLibGetLastError func-
tion after each regular iManager API function call.

iManager & Software API User Manual 34

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.7 SusiBoardCount
Check number of installed iManager compliant boards.

SUSIRET_ULONG SusiBoardCount(unsigned long dwClass, unsigned long
dwFlags);

Parameters
dwClass the hardware class of the board.
dwFlags either SUSI_BOARD_OPEN_FLAGS_DEFAULT

or SUSI_BOARD_OPEN_FLAGS_PRIMARYONLY

SUSI_BOARD_OPEN_FLAGS_DEFAULT
counts all boards of the given hardware class

SUSI_BOARD_OPEN_FLAGS_PRIMARYONLY
counts only boards which primary board class matches the given
hardware class

Return Value
the number of installed iManager compliant boards with the specified board class
dwClass. In case of dwClass is 0, the total number of boards in the system will be
returned.

Remarks
35 iManager & Software API User Manual

7.8 SusiBoardOpen
Open the iManager compliant board and get handle

SUSIRET_BOOL SusiBoardOpen(unsigned long dwClass, unsigned long
dwNum, unsigned long dwFlags, HSUSI *phSusi);

Parameters
dwClass the hardware class of the board, see also 4.2 subsection: "Board

classes"
dwNum the subsequent number of the selected board in it's class, start-

ing from 0
dwFlags either SUSI_BOARD_OPEN_FLAGS_DEFAULT

or SUSI_BOARD_OPEN_FLAGS_PRIMARYONLY

SUSI_BOARD_OPEN_FLAGS_DEFAULT
scans for all boards of the specified hardware class,
regardless if it's the primary class or the secondary class

SUSI_BOARD_OPEN_FLAGS_PRIMARYONLY
scans for boards which primary board class
matches the specified hardware class

phSusi buffer where the board handle will be stored

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Each iManager compliant board in the system will be addressed by its own
unique board handle. This function is used to open such a board and to obtain a
valid board handle. If there is more then one iManager board in the system, each
board can be individually selected by its board class dwClass and a subsequent
enumeration of dwNum. On success, the function returns the board handle in *
phSusi.
SUSI_BOARD_OPEN_FLAGS_PRIMARYONLY might be used for dwFlags to
select a board of a dedicated board class. Together with an enumerated counter
starting from 0 the board can be addressed exactly.

iManager & Software API User Manual 36

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.9 SusiBoardOpenByNameA
Open the iManager compliant board and get handle by the name, ASCII code
Ver.

SUSIRET_BOOL SusiBoardOpenByNameA(const char *pszName, HSUSI
*phSusi);

Parameters
pszName the name of the board.
phSusi buffer where the board handle will be stored

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
This function behaves like SusiBoardOpen except that the board is specified by
its name. On success, the function returns the board handle in *phSusi.

7.10 SusiBoardOpenByNameW
Open the iManager compliant board and get handle by the name, Unicode Ver.

SUSIRET_BOOL SusiBoardOpenByNameW(const wchar_t *pszName, HSUSI
*phSusi);

Parameters
pszName the name of the board.
phSusi buffer where the board handle will be stored

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
This function behaves like SusiBoardOpen except that the board is specified by
its name. On success, the function returns the board handle in *phSusi.

37 iManager & Software API User Manual

7.11 SusiBoardClose
Close the iManager compliant board after using.

SUSIRET_BOOL SusiBoardClose(HSUSI hSusi);

Parameters
hSusi the board handle

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Closes a board which was previously opened by either SusiBoardOpen or Susi-
BoardOpenByName*.

7.12 SusiBoardGetNameA
Get platform name, ASCII code Ver.

SUSIRET_BOOL SusiBoardGetNameA(HSUSI hSusi, char *pszName, unsigned
long dwSize);

Parameters
hSusi the board handle
pszName buffer where the board name will be stored
dwSize size of the buffer in bytes, should be at least

SUSI_BOARD_MAX_SIZE_ID_STRING

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Determines the name of the board addressed by hSusi.

iManager & Software API User Manual 38

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.13 SusiBoardGetNameW
Get platform name, Unicode Ver.

SUSIRET_BOOL SusiBoardGetNameW(HSUSI hSusi, wchar_t *pszName,
unsigned long dwSize);

Parameters
hSusi the board handle
pszName buffer where the board name will be stored
dwSize size of the buffer in bytes, should be at least

SUSI_BOARD_MAX_SIZE_ID_STRING

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Determines the name of the board addressed by hSusi.

7.14 SusiBoardGetInfoA
Get platform informateion, ASCII code Ver.

SUSIRET_BOOL SusiBoardGetInfoA(HSUSI hSusi, SUSIBOARDINFOA
*pBoardInfo);

Parameters
hSusi the board handle
pBoardInfo the buffer where the board information will be stored

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Gets the board information of a iManager API compliant board addressed by
hSusi.

39 iManager & Software API User Manual

7.15 SusiBoardGetInfoW
Get platform information, Unicode Version

SUSIRET_BOOL SusiBoardGetInfoW(HSUSI hSusi, SUSIBOARDINFOW
*pBoardInfo);

Parameters
hSusi the board handle
pBoardInfo the buffer where the board information will be stored

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Gets the board information of a iManager API compliant board addressed by
hSusi.

7.16 SusiBoardGetBootCounter
Gets the current value of the boot counter.

SUSIRET_BOOL SusiBoardGetBootCounter(HSUSI hSusi, unsigned long *pdw-
Count);

Parameters
hSusi the board handle
pdwCount the variable where the boot counter value will be stored

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
iManager & Software API User Manual 40

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.17 SusiBoardGetRunningTimeMeter
Gets the current running time of the board measured in hours.

SUSIRET_BOOL SusiBoardGetRunningTimeMeter(HSUSI hSusi, unsigned long
*pdwCount);

Parameters
hSusi the board handle
pdwCount the variable where the value of the running time meter will be

stored

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

7.18 SusiWDogCount
Check number of watchdogs function on the platform.

SUSIRET_ULONG SusiWDogCount(HSUSI hSusi);

Parameters
hSusi the board handle

Return Value
the number of installed Watchdogs in the system.

Remarks

41 iManager & Software API User Manual

7.19 SusiWDogIsAvailable
Check that the watchdog function unit is workable.

SUSIRET_BOOL SusiWDogIsAvailable(HSUSI hSusi, unsigned long dwUnit);

Parameters
hSusi the board handle
dwUnit the unit number you want to control

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

7.20 SusiWDogTrigger
Triggers the watchdog; it doesn't timeout.

SUSIRET_BOOL SusiWDogTrigger(HSUSI hSusi, unsigned long dwUnit);

Parameters
hSusi the board handle
dwUnit the unit number you want to control

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

7.21 SusiWDogGetConfigStruct
Get the configuration which is the watchdog working rule on the platform.

SUSIRET_BOOL SusiWDogGetConfigStruct(HSUSI hSusi, unsigned long
dwUnit, SUSIWDCONFIG *pConfig);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pConfig the pointer to the configuration structure

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
iManager & Software API User Manual 42

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.22 SusiWDogSetConfigStruct

Set the configuration which is the watchdog working rule on the platform.

SUSIRET_BOOL SusiWDogSetConfigStruct(HSUSI hSusi, unsigned long
dwUnit, SUSIWDCONFIG *pConfig);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pConfig the pointer to the configuration structure

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

7.23 SusiWDogSetConfig
Set the single watchdog working rule on the platform.

SUSIRET_BOOL SusiWDogSetConfig(HSUSI hSusi, unsigned long dwUnit,
unsigned long timeout, unsigned long delay, unsigned long mode);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pConfig the pointer to the configuration structure
timeout the value in milliseconds before the watchdog times out. An applica-

tion which is observed by the watchdog must call SusiWDogTrigger
within the specified time.

delay the delay before the watchdog starts working. This is required to pre-
vent a reboot while the operating system or the application initializes.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Sets the configuration of the watchdog. WhileSusiWDogSetConfigStruct takes a
complete structure, SusiWDogSetConfig takes single values. Use SusiWDogSet-
ConfigStruct to benefit from the advantages of a staged watchdog.

43 iManager & Software API User Manual

7.24 SusiWDogDisable
Disable the watchdog function.

SUSIRET_BOOL SusiWDogDisable(HSUSI hSusi, unsigned long dwUnit);

Parameters
hSusi the board handle
dwUnit the unit number you want to control

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

7.25 SusiWDogGetInfo
Gets the information structure of the watchdog.

SUSIRET_BOOL SusiWDogGetInfo(HSUSI hSusi, unsigned long dwUnit, SUSI-
WDINFO *pInfo);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pInfo pointer to the Watchdog information structure

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

iManager & Software API User Manual 44

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.26 SusiWDogSetIntCallBack
Register the interrupt active function.

SUSIRET_BOOL SusiWDogSetIntCallBack(HSUSI hSusi, unsigned long dwUnit,
SUSI_WDOG_CALLBACK_EVENT_INT *fnCallBack);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
fnCallBack pointer of call back function which will be called when interrupt

happened.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Before using this function, the SUSIWDCONFIG:dwOpMode must be set to
SUSI_WDOG_EVENT_INT.

7.27 SusiIOCount
Check number of IO function on the platform.

SUSIRET_ULONG SusiIOCount(HSUSI hSusi);

Parameters
hSusi the board handle

Return Value
the number of installed I/Os in the system.

Remarks
45 iManager & Software API User Manual

7.28 SusiIOIsAvailable
Check I/O function unit is workable.

SUSIRET_BOOL SusiIOIsAvailable(HSUSI hSusi, unsigned long dwUnit);

Parameters
hSusi the board handle
dwUnit the unit number you want to control

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

7.29 SusiIORead
Read the I/O pin's state.

SUSIRET_BOOL SusiIORead(HSUSI hSusi, unsigned long dwUnit, unsigned
long *pdwData);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pdwData the pointer to the destination buffer

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Reads the value of the input pins of IO unit dwUnit. It's recommended to combine
this value with the result of SusiIOGetDirectionCaps.

iManager & Software API User Manual 46

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.30 SusiIOWrite
Write the I/O pin's state.

SUSIRET_BOOL SusiIOWrite(HSUSI hSusi, unsigned long dwUnit, unsigned
long dwData);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
dwData the data to write

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Writes the value dwData to the output pins of I/O unit dwUnit. It's recommended
to combine this value with the result of SusiIOGetDirectionCaps.

7.31 SusiIOGetDirectionCaps
Get I/O direction's capability.

SUSIRET_BOOL SusiIOGetDirectionCaps(HSUSI hSusi, unsigned long dwUnit,
unsigned long *pdwInputs, unsigned long *pdwOutputs);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pdwInputs the pointer to the destination buffer of the input capabilities
pdwOutputs the pointer to the destination buffer of the output capabilities

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Determines the input and the output capabilities of the I/O unit dwUnit. Each GPI/
GPO/GPIO is represented by a bit in the variables pdwInputs and pdwOutputs. If
the pin has input capabilities, the respective pin in pdwInputs is set to 1. If the pin
has output capabilities, the respective pin in pdwOutputs is set to 1. If the pin has
input and output capabilities, both respective bits in pdwInputs and pdwOutputs
are set to 1. In this case, the data direction (if input or output) may be controlled
by the SusiIOSetDirection function call.

47 iManager & Software API User Manual

7.32 SusiIOGetDirection
Get the I/O pin's direction.

SUSIRET_BOOL SusiIOGetDirection(HSUSI hSusi, unsigned long dwUnit,
unsigned long *pdwData);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pdwData the pointer to the destination buffer of the direction information

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Determines the current data direction of the respective GPI/GPO/GPIO pin. A bit
set to 1 in this field indicates that the respective pin is configured as an input, a bit
set to 0 indicates that the respective pin is configured as an output. Notice that
the binary values for pins that are not implemented are unspecified and can be 0
or 1. Therefore, it's recommended to cross check the result of SusiIOGetDirection
with the result of SusiIOGetDirectionCaps.

7.33 SusiIOSetDirection
Set the I/O pin's direction.

SUSIRET_BOOL SusiIOSetDirection(HSUSI hSusi, unsigned long dwUnit,
unsigned long dwData);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
dwData the direction information

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Sets the current data direction of the respective GPI/GPO/GPIO pin. A bit set to 1
in this field indicates that the related pin is configured to be an input, a bit set to 0
indicates that the related pin is configured to be an output. Notice that the binary
values for pins that are not implemented are unspecified and should be written as
0.

iManager & Software API User Manual 48

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.34 SusiSMBusScanDevice
Scan if the address is taken by one of the slave devices currently connected to
the SMBus.

SUSIRET_INT SusiSMBusScanDevice(HSUSI hSusi, unsigned char bAddr_7);

Parameters
hSusi the board handle
SlaveAddress Specifies the 7-bit device address, ranging from 0x00 - 0x7F.

Return Value
value Meaning
-1 The function fails.
0 The function succeeds; the address is not occupied.
1 The function succeeds; there is a device to this address.

Remarks
There could be as many as 128 devices connected to a single SMBus. For more
information about how to use this API, please refer to the "Programming Over-
view", section "SMBus functions".

7.35 SusiSMBusReadQuick
Turn SMBus device function on (off) or enable (disable) a specific device mode.

SUSIRET_BOOL SusiSMBusReadQuick(HSUSI hSusi, unsigned char bAddr);

Parameters
hSusi the board handle
SlaveAddress Specifies the 8-bit device address, ranging from 0x00 - 0xFF.
Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress could be
ignored.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For more information about how to use this API, please refer to the "Programming
Overview", section "SMBus functions".

49 iManager & Software API User Manual

7.36 SusiSMBusWriteQuick
Turn SMBus device function off (on) or disable (enable) a specific device mode.

SUSIRET_BOOL SusiSMBusWriteQuick(HSUSI hSusi, unsigned char bAddr);

Parameters
hSusi the board handle
SlaveAddress Specifies the 8-bit device address, ranging from 0x00 - 0xFF.
Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress could be
ignored.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For more information about how to use this API, please refer to the "Programming
Overview", section "SMBus functions".

7.37 SusiSMBusReceiveByte
Receive information in bytes from the target slave device in the SMBus.

SUSIRET_BOOL SusiSMBusReceiveByte(HSUSI hSusi, unsigned char bAddr,
unsigned char *pDataByte);

Parameters
hSusi the board handle
SlaveAddress Specifies the 8-bit device address, ranging from 0x00 - 0xFF.
Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress could be
ignored.
Result Pointer to a variable in which the function receives the byte

information.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
A simple device may have information that the host needs to be received in the
parameter Result.
For more information about how to use this API, please refer to the "Programming
Overview", section "SMBus functions".

iManager & Software API User Manual 50

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.38 SusiSMBusSendByte
Send information in bytes to the target slave device in the SMBus.

SUSIRET_BOOL SusiSMBusSendByte(HSUSI hSusi, unsigned char bAddr,
unsigned char bData);

Parameters
hSusi the board handle
SlaveAddress Specifies the 8-bit device address, ranging from 0x00 - 0xFF.
Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress could be
ignored.
Result Specifies the byte information to be sent.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
A simple device may recognize its own slave address and accept up to 256 possi-
ble encoded commands in the form of a byte given in the parameter Result.
For more information about how to use this API, please refer to the "Programming
Overview", section "SMBus functions".

7.39 SusiSMBusReadByte
Read a byte of data from the target slave device in the SMBus.

SUSIRET_BOOL SusiSMBusReadByte(HSUSI hSusi, unsigned char bAddr,
unsigned char bReg, unsigned char *pDataByte);

Parameters
hSusi the board handle
SlaveAddress Specifies the 8-bit device address, ranging from 0x00 - 0xFF.
Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress could be
ignored.
RegisterOffset Specifies the offset of the device register to read data from.
Result Pointer to a variable in which the function reads the byte data.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For more information about how to use this API, please refer to the "Programming
Overview", section "SMBus functions".

51 iManager & Software API User Manual

7.40 SusiSMBusWriteByte
Write a byte of data to the target slave device in the SMBus.

SUSIRET_BOOL SusiSMBusWriteByte(HSUSI hSusi, unsigned char bAddr,
unsigned char bReg, unsigned char bData);

Parameters
hSusi the board handle
SlaveAddress Specifies the 8-bit device address, ranging from 0x00 - 0xFF.
Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress could be
ignored.
RegisterOffset Specifies the offset of the device register to read data from.
Result Specifies the byte data to be written .

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For more information about how to use this API, please refer to the "Programming
Overview", section "SMBus functions".

7.41 SusiSMBusReadWord
Read a word (2 bytes) of data from the target slave device in the SMBus.

SUSIRET_BOOL SusiSMBusReadWord(HSUSI hSusi, unsigned char bAddr,
unsigned char bReg, unsigned short *pDataWord);

Parameters
hSusi the board handle
SlaveAddress Specifies the 8-bit device address, ranging from 0x00 - 0xFF.
Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress could be
ignored.
RegisterOffset Specifies the offset of the device register to word data from.
Result Pointer to a variable in which the function reads the word data.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The first byte read from slave device will be placed in the low byte of Result, and
the second byte read will be placed in the high byte.
For more information about how to use this API, please refer to the "Programming
Overview", section "SMBus functions".
iManager & Software API User Manual 52

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.42 SusiSMBusWriteWord
Write a word (2 bytes) of data to the target slave device in the SMBus.

SUSIRET_BOOL SusiSMBusWriteWord(HSUSI hSusi, unsigned char bAddr,
unsigned char bReg, unsigned short wData);

Parameters
hSusi the board handle
SlaveAddress Specifies the 8-bit device address, ranging from 0x00 - 0xFF.
Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress could be
ignored.
RegisterOffset Specifies the offset of the device register to word data from.
Result Specifies the word data to be written .

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The low byte of Result will be send to the slave device first and then the high byte.
For more information about how to use this API, please refer to the "Programming
Overview", section "SMBus functions"

7.43 SusiI2CCount
Gets the number of installed I2C buses on the platform.

SUSIRET_ULONG SusiI2CCount(HSUSI hSusi);

Parameters
hSusi the board handle

Return Value
the number of installed I2C buses in the system.

Remarks

53 iManager & Software API User Manual

7.44 SusiI2CType
Gets the type of the addressed I2C bus.

SUSIRET_ULONG SusiI2CType(HSUSI hSusi, unsigned long dwUnit);

Parameters
hSusi the board handle
dwUnit the unit number you want to control

Return Value
SUSI_I2C_TYPE_PRIMARY the primary I2C bus
SUSI_I2C_TYPE_SMB the system management bus
SUSI_I2C_TYPE_DDC the I2C bus of the DDC interface
or
SUSI_I2C_TYPE_UNKNOWN for unknown or special purposes if the type is

not known.

Remarks

7.45 SusiI2CIsAvailable
Check I2C function unit is workable.

SUSIRET_BOOL SusiI2CIsAvailable(HSUSI hSusi, unsigned long dwUnit);

Parameters
hSusi the board handle
dwUnit the unit number you want to control

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

iManager & Software API User Manual 54

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.46 SusiI2CRead
Read data from I2C device.

SUSIRET_BOOL SusiI2CRead(HSUSI hSusi, unsigned long dwUnit, unsigned
char bAddr, unsigned char *pBytes, unsigned long dwLen);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
bAddr the 8bit address of the affected device on the bus (bit 0 must be logical
1 to indicate a read operation)
pBytes the pointer to the destination buffer
dwLen the number of sequential bytes to read

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Reads dwLen subsequent bytes from the device with address bAddr at I2C bus
dwUnit to buffer pBytes.

7.47 SusiI2CWrite
Write data from I2C device.

SUSIRET_BOOL SusiI2CWrite(HSUSI hSusi, unsigned long dwUnit, unsigned
char bAddr, unsigned char *pBytes, unsigned long dwLen);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
bAddr the 8-bit address of the affected device on the bus (bit 0 must be logi-

cal 0 to indicate a write operation)
pBytes the pointer to the destination buffer
dwLen the number of sequential bytes to write

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Writes dwLen subsequent bytes from the buffer pBytes to the device with address
bAddr at I2C bus dwUnit.

55 iManager & Software API User Manual

7.48 SusiI2CReadRegister
Read data from I2C device register.

SUSIRET_BOOL SusiI2CReadRegister(HSUSI hSusi, unsigned long dwUnit,
unsigned char bAddr, unsigned short wReg, unsigned char *pDataByte);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
bAddr the 8bit address of the affected device on the bus (bit 0 must be logical

1 to indicate a read operation)
wReg the number of the register to read
pDataByte the pointer to the destination buffer

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Reads one byte from the register wReg in the device with address bAddr at I2C
bus dwUnit to buffer pDataByte.

7.49 SusiI2CWriteRegister
Write data from I2C device register.

SUSIRET_BOOL SusiI2CWriteRegister(HSUSI hSusi, unsigned long dwUnit,
unsigned char bAddr, unsigned short wReg, unsigned char bData);

Parameters
hSusi the board handle
dwUnitthe unit number you want to control
bAddr the 8bit address of the affected device on the bus (bit 0 must be logical 0 to
indicate a write operation)
wReg the number of the register to write to
bData the byte value to write

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Writes the value of bData to the register wReg in the device with address bAddr
at I2C bus dwUnit to buffer pDataByte.

iManager & Software API User Manual 56

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.50 SusiI2CWriteReadCombined
Combines writing to and reading from a device on the I2C bus in one step.

SUSIRET_BOOL SusiI2CWriteReadCombined(HSUSI hSusi, unsigned long
dwUnit, unsigned char bAddr, unsigned char *pBytesWrite,

Parameters
hSusi the board handle
dwUnit the unit number you want to control
bAddr the 8bit address of the affected device on the bus (bit 0 must be

logical 0)
pBytesWrite the pointer to the source buffer which contains the bytes to write
dwLenWrite the amount of bytes to write
pBytesRead the pointer to the destination buffer
dwLenRead the amount of bytes to read

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
There will be no stop condition after writing to the device, the subsequent read
cycle will be initiated with a leading start condition.

7.51 SusiI2CGetMaxFrequency
Gets the maximum operating frequency.

SUSIRET_BOOL SusiI2CGetMaxFrequency(HSUSI hSusi, unsigned long
dwUnit, unsigned long *pdwSetting);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pdwSetting the variable where the maximum frequency setting will be stored

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Gets the maximum operating frequency of the I2C bus specified by unit number
dwUnit in Hz.

57 iManager & Software API User Manual

7.52 SusiI2CGetFrequency
Gets the current operating frequency.

SUSIRET_BOOL SusiI2CGetFrequency(HSUSI hSusi, unsigned long dwUnit,
unsigned long *pdwSetting);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pdwSetting the variable where the current frequency setting will be stored

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Gets the current operating frequency of the I2C bus specified by unit number
dwUnit in Hz.

7.53 SusiI2CGetMaxFrequency
Sets the maximum operating frequency.

SUSIRET_BOOL SusiI2CSetFrequency(HSUSI hSusi, unsigned long dwUnit,
unsigned long dwSetting);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pdwSetting the frequency setting in Hz

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Sets the current operating frequency of the I2C bus specified by unit number
dwUnit in Hz. Commonly used values are 100000 and 400000.

iManager & Software API User Manual 58

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.54 SusiVgaCount
Check number of VGA function on the platform.

SUSIRET_ULONG SusiVgaCount(HSUSI hSusi);

Parameters
hSusi the board handle

Return Value
the number of installed VGA in the system.

Remarks

7.55 SusiVgaGetBacklight
Gets the backlight brightness value.

SUSIRET_BOOL SusiVgaGetBacklight(HSUSI hSusi, unsigned long dwUnit,
unsigned long *pdwSetting);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pdwSetting the variable where the backlight brigthness will be stored

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The range of the value is between 0 and SUSI_VGA_BACKLIGHT_MAX (100),
respectively 0 and 100%.
59 iManager & Software API User Manual

7.56 SusiVgaSetBacklight
Sets the backlight brigthness value.

SUSIRET_BOOL SusiVgaSetBacklight(HSUSI hSusi, unsigned long dwUnit,
unsigned long dwSetting);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
dwSetting the backlight value

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The range of the value is between 0 and SUSI_VGA_BACKLIGHT_MAX (100),
respectively 0 and 100%.

7.57 SusiVgaGetInfo
Gets the VGA board information.

SUSIRET_BOOL SusiVgaGetInfo(HSUSI hSusi, unsigned long dwUnit, SUSIV-
GAINFO *pInfo);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pInfo the buffer where the VGA information will be stored

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Gets the VGA board information of a iManager API compliant board addressed by
hSusi.

iManager & Software API User Manual 60

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.58 SusiTemperatureCount
Check number of Temperature function on the platform.

SUSIRET_ULONG SusiTemperatureCount(HSUSI hSusi);

Parameters
hSusi the board handle

Return Value
the number of installed temperature sensors in the system.

Remarks

7.59 SusiTemperatureGetInfo
Gets the temperature sensor information.

SUSIRET_BOOL SusiTemperatureGetInfo(HSUSI hSusi, unsigned long dwUnit,
SUSITEMPERATUREINFO *pInfo);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pInfo pointer to the sensor information structure

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Gets the information structure of the specified temperature sensor.

61 iManager & Software API User Manual

7.60 SusiTemperatureGetCurrent
Gets the temperature sensor current value.

SUSIRET_BOOL SusiTemperatureGetCurrent(HSUSI hSusi, unsigned long
dwUnit, unsigned long *pdwSetting, unsigned long *pdwStatus);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pdwSetting pointer to the sensor's current measured value
pdwStatus pointer to the sensor's current status value

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Gets the actual value of the specified temperature sensor.

7.61 SusiTemperatureSetLimits
Sets the temperature limit for alarm.

SUSIRET_BOOL SusiTemperatureSetLimits(HSUSI hSusi, unsigned long
dwUnit, SUSITEMPERATUREINFO *pInfo);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pInfo pointer to the sensor information structure.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

iManager & Software API User Manual 62

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.62 SusiFanCount
Check number of fan functions on the platform.

SUSIRET_ULONG SusiFanCount(HSUSI hSusi);

Parameters
hSusi the board handle

Return Value
the number of installed fan sensors in the system.

Remarks

7.63 SusiFanIsAvailable
Check that the fan function unit is workable.

SUSIRET_BOOL SusiFanIsAvailable(HSUSI hSusi, unsigned long dwUnit);

Parameters
hSusi the board handle
dwUnit the unit number you want to control

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

7.64 SusiFanSetConfigStruct
Set auto fan function mode or alarm mode.

SUSIRET_BOOL SusiFanSetConfigStruct(HSUSI hSusi, unsigned long dwUnit,
SUSIFANCONFIG *pConfig);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pConfig pointer to the auto fan function config.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For more information about how to use this API, please refer to the "Programming
Overview", section "HWM functions".
63 iManager & Software API User Manual

7.65 SusiFanGetConfigStruct
Get information about auto fan function mode or alarm mode.

SUSIRET_BOOL SusiFanGetConfigStruct(HSUSI hSusi, unsigned long dwUnit,
SUSIFANCONFIG *pConfig);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pConfig pointer to the auto fan function config.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For more information about how to use this API, please refer to "Programming
Overview", part "HWM functions".

7.66 SusiFanGetInfo
Gets the fan sensor information.

SUSIRET_BOOL SusiFanGetInfo(HSUSI hSusi, unsigned long dwUnit, SUSI-
FANINFO *pInfo);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pInfo pointer to the sensor information structure

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Gets the information structure of the specified temperature sensor.

iManager & Software API User Manual 64

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.67 SusiFanGetCurrent
Gets the fan sensor current value.

SUSIRET_BOOL SusiFanGetCurrent(HSUSI hSusi, unsigned long dwUnit,
unsigned long *pdwSetting, unsigned long *pdwStatus);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pdwSetting pointer to the sensor's current measured value
pdwStatus pointer to the sensor's current status value

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Gets the actual value of the specified fan sensor.

7.68 SusiFanSetLimits
Sets the fan limit for alarm.

SUSIRET_BOOL SusiFanSetLimits(HSUSI hSusi, unsigned long dwUnit, SUSI-
FANINFO *pInfo);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pInfo pointer to the sensor information structure.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

65 iManager & Software API User Manual

7.69 SusiVoltageCount
Check number of voltage function on the platform.

SUSIRET_ULONG SusiVoltageCount(HSUSI hSusi);

Parameters
hSusi the board handle

Return Value
the number of installed voltage sensors in the system.

Remarks

7.70 SusiVoltageGetInfo
Gets the voltage sensor information.

SUSIRET_BOOL SusiVoltageGetInfo(HSUSI hSusi, unsigned long dwUnit, SUS-
IVOLTAGEINFO *pInfo);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pInfo pointer to the sensor information structure

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Gets the information structure of the specified voltage sensor.

iManager & Software API User Manual 66

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.71 SusiVoltageGetCurrent
Gets the voltage sensor current value.

SUSIRET_BOOL SusiVoltageGetCurrent(HSUSI hSusi, unsigned long dwUnit,
unsigned long *pdwSetting, unsigned long *pdwStatus);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pdwSetting pointer to the sensor's current measured value
pdwStatus pointer to the sensor's current status value

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Gets the actual value of the specified voltage sensor.

7.72 SusiVoltageSetLimits
Sets the voltage limit for alarm.

SUSIRET_BOOL SusiVoltageSetLimits(HSUSI hSusi, unsigned long dwUnit,
SUSIVOLTAGEINFO *pInfo);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
pInfo pointer to the sensor information structure.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

67 iManager & Software API User Manual

7.73 SusiStorageAreaCount
Check number of storage area function on the platform.

SUSIRET_ULONG SusiStorageAreaCount(HSUSI hSusi, unsigned long dwUnit);

Parameters
hSusi the board handle

Return Value
the number of installed storage area sensors in the system.

Remarks

7.74 SusiStorageAreaType
Gets the Type of storage area on the platform.

SUSIRET_ULONG SusiStorageAreaType(HSUSI hSusi, unsigned long dwUnit);

Parameters
hSusi the board handle
dwUnit the unit number you want to control

Return Value
SUSI_STORAGE_AREA_EEPROM
SUSI_STORAGE_AREA_FLASH
SUSI_STORAGE_AREA_CMOS
SUSI_STORAGE_AREA_RAM
or
SUSI_STORAGE_AREA_UNKNOWN if the type is not known.

Remarks
This function is also used to determine the pure type of a dedicated storage area
(by separating it from the unit number).

iManager & Software API User Manual 68

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.75 SusiStorageAreaSize
Gets the Size of storage area on the platform.

SUSIRET_ULONG SusiStorageAreaSize(HSUSI hSusi, unsigned long dwUnit);

Parameters
hSusi the board handle
dwUnit the unit number you want to control

Return Value
the size of the storage area in bytes.

Remarks

7.76 SusiStorageAreaBlockSize
Gets the block size of storage area on the platform.

SUSIRET_ULONG SusiStorageAreaBlockSize(HSUSI hSusi, unsigned long
dwUnit);

Parameters
hSusi the board handle
dwUnit the unit number you want to control

Return Value
the block size of a storage area block in bytes.

Remarks
69 iManager & Software API User Manual

7.77 SusiStorageAreaRead
Read data form the storage area on the platform.

SUSIRET_BOOL SusiStorageAreaRead(HSUSI hSusi, unsigned long dwUnit,
unsigned long dwOffset, unsigned char *pBytes, unsigned long dwLen);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
dwOffset byte offset where the data is read from
pBytes pointer to the destination buffer
dwLen number of bytes to read

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Reads dwLen bytes from the storage area into buffer pBytes.

7.78 SusiStorageAreaWrite
Write data to the storage area on the platform.

SUSIRET_BOOL SusiStorageAreaWrite(HSUSI hSusi, unsigned long dwUnit,
unsigned long dwOffset, unsigned char *pBytes, unsigned long dwLen);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
dwOffset byte offset where the data writes to
pBytes pointer to the source buffer
dwLen number of bytes to write

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Writes dwLen bytes from the buffer pBytes to the storage area .

iManager & Software API User Manual 70

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.79 SusiStorageAreaErase
Erase data of the storage area on the platform.

SUSIRET_BOOL SusiStorageAreaErase(HSUSI hSusi, unsigned long dwUnit,
unsigned long dwOffset, unsigned long dwLen);

Parameters
hSusi the board handle
dwUnitt he unit number you want to control
dwOffset byte offset to the area, which will be erased
dwLen number of bytes to erase

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Erases dwLen bytes from the storage area starting at offset dwOffset.

7.80 SusiStorageAreaEraseStatus
Get erase data of the storage area on the platform.

SUSIRET_BOOL SusiStorageAreaEraseStatus(HSUSI hSusi, unsigned long
dwUnit, unsigned long dwOffset, unsigned long dwLen, unsigned long *lpStatus);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
dwOffset byte offset to the which will be erased
dwLen number of bytes to erase
lpStatus pointer to the status

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Return the status of the current area erase progress in lpStatus:
0 Erasing the specified area finished successfully
1 Erasing in progress
2 Erase error

71 iManager & Software API User Manual

7.81 SusiStorageAreaLock
Lock a storage area for write protect.

SUSIRET_BOOL SusiStorageAreaLock(HSUSI hSusi, unsigned long dwUnit,
unsigned long dwFlags, unsigned char *pBytes, unsigned long dwLen);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
dwFlags reserved for future use, set to 0
pBytes pointer to the source buffer containing the secret string
dwLen number of bytes to write

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
This function is used to write protect a storage area. Write access to a locked
storage area is rejected as long as the area is unlocked with the SusiStorageAr-
eaUnlock function call. Read access to a locked storage area isn't affected by this
mechanism and therefore still permitted at any time. This kind of implementation
allows you to set up features such as protected custom serial numbers or the
selective enabling of software features. This function fails if the selected area is
already locked.

The current release of the software only supports the locking of storage areas of
type SUSI_STORAGE_AREA_EEPROM. The protection mechanism for this type
expects a secret string with up to 6 characters. The length of the string must be
specified in dwLen.

iManager & Software API User Manual 72

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
7.82 SusiStorageAreaUnlock
Unlock a storage area for write protect.

SUSIRET_BOOL SusiStorageAreaUnlock(HSUSI hSusi, unsigned long dwUnit,
unsigned long dwFlags, unsigned char *pBytes, unsigned long dwLen);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
dwFlags reserved for future use, set to 0
pBytes pointer to the source buffer containing the secret string
dwLen number of bytes to write

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
This function is used to unlock a write protected storage area that was previously
locked using SusiStorageAreaLock. To unlock an area the secret string must be
exactly the same as the string that was used to lock the area. If the attempt to
unlock an area fails, any further try to unlock the area requires a preceding power
off/on cycle of the system.
This function fails if the selected area is already unlocked.

7.83 SusiStorageAreaIsLocked
Check the storage area is locked.

SUSIRET_BOOL SusiStorageAreaIsLocked(HSUSI hSusi, unsigned long
dwUnit, unsigned long dwFlags);

Parameters
hSusi the board handle
dwUnit the unit number you want to control
dwFlags reserved for future use, set to 0

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
This function is used to determine the locking state of a storage area. It returns
true if the selected area is locked. It returns false if the area isn't locked or if the
functionality isn't implemented.
73 iManager & Software API User Manual

iManager & Software API User Manual 74

C
hapter 7

S
U

S
I A

P
IP

rogram
m

er's
D

ocum
entation
75 iManager & Software API User Manual

www.advantech.com
Please verify specifications before quoting. This guide is intended for reference
purposes only.
All product specifications are subject to change without notice.
No part of this publication may be reproduced in any form or by any means,
electronic, photocopying, recording or otherwise, without prior written permis-
sion of the publisher.
All brand and product names are trademarks or registered trademarks of their
respective companies.
© Advantech Co., Ltd. 2009

	iManager & Software API
	1 Introduction
	1.1 Intelligent Management for COM modules.
	1.2 Benefits

	2 Environments
	2.1 iManager Utility
	2.1.1 Hardware
	2.1.2 Operating Systems

	2.2 iManager API:
	2.2.1 Hardware
	2.2.2 Operating Systems

	3 Installation
	3.1 iManager Utility

	4 iManager Utility
	4.1 System Information
	4.2 Hardware Monitor (HWM)
	4.3 Advanced WatchDog
	4.4 Settings
	4.5 Alarm
	4.6 SmartFan

	5 Installing the iManager API
	5.1 Microsoft Windows 2000/ XP/ XP Embedded
	5.2 Microsoft WindowsCE
	5.3 Linux
	5.4 QNX
	5.5 WindRiver VxWorks

	6 Programming Overview
	6.1 Generic Board information
	6.2 Watchdog (WDog) Functions Class
	6.3 GPIO (I/O) functions
	6.4 SMBus Functions
	6.5 IIC Functions
	6.6 VGA Control (VC) Functions
	6.7 Hardware Monitoring Functions
	6.8 Storage Area Types

	7 SUSI API Programmer's Documentation
	7.1 SusiDllUninitialize
	7.2 SusiDllIsAvailable
	7.3 SusiDllInstall
	7.4 SusiDllGetDrvVersion
	7.5 SusiDllGetLastError
	7.6 SusiDllInstall
	7.7 SusiBoardCount
	7.8 SusiBoardOpen
	7.9 SusiBoardOpenByNameA
	7.10 SusiBoardOpenByNameW
	7.11 SusiBoardClose
	7.12 SusiBoardGetNameA
	7.13 SusiBoardGetNameW
	7.14 SusiBoardGetInfoA
	7.15 SusiBoardGetInfoW
	7.16 SusiBoardGetBootCounter
	7.17 SusiBoardGetRunningTimeMeter
	7.18 SusiWDogCount
	7.19 SusiWDogIsAvailable
	7.20 SusiWDogTrigger
	7.21 SusiWDogGetConfigStruct
	7.22 SusiWDogSetConfigStruct
	7.23 SusiWDogSetConfig
	7.24 SusiWDogDisable
	7.25 SusiWDogGetInfo
	7.26 SusiWDogSetIntCallBack
	7.27 SusiIOCount
	7.28 SusiIOIsAvailable
	7.29 SusiIORead
	7.30 SusiIOWrite
	7.31 SusiIOGetDirectionCaps
	7.32 SusiIOGetDirection
	7.33 SusiIOSetDirection
	7.34 SusiSMBusScanDevice
	7.35 SusiSMBusReadQuick
	7.36 SusiSMBusWriteQuick
	7.37 SusiSMBusReceiveByte
	7.38 SusiSMBusSendByte
	7.39 SusiSMBusReadByte
	7.40 SusiSMBusWriteByte
	7.41 SusiSMBusReadWord
	7.42 SusiSMBusWriteWord
	7.43 SusiI2CCount
	7.44 SusiI2CType
	7.45 SusiI2CIsAvailable
	7.46 SusiI2CRead
	7.47 SusiI2CWrite
	7.48 SusiI2CReadRegister
	7.49 SusiI2CWriteRegister
	7.50 SusiI2CWriteReadCombined
	7.51 SusiI2CGetMaxFrequency
	7.52 SusiI2CGetFrequency
	7.53 SusiI2CGetMaxFrequency
	7.54 SusiVgaCount
	7.55 SusiVgaGetBacklight
	7.56 SusiVgaSetBacklight
	7.57 SusiVgaGetInfo
	7.58 SusiTemperatureCount
	7.59 SusiTemperatureGetInfo
	7.60 SusiTemperatureGetCurrent
	7.61 SusiTemperatureSetLimits
	7.62 SusiFanCount
	7.63 SusiFanIsAvailable
	7.64 SusiFanSetConfigStruct
	7.65 SusiFanGetConfigStruct
	7.66 SusiFanGetInfo
	7.67 SusiFanGetCurrent
	7.68 SusiFanSetLimits
	7.69 SusiVoltageCount
	7.70 SusiVoltageGetInfo
	7.71 SusiVoltageGetCurrent
	7.72 SusiVoltageSetLimits
	7.73 SusiStorageAreaCount
	7.74 SusiStorageAreaType
	7.75 SusiStorageAreaSize
	7.76 SusiStorageAreaBlockSize
	7.77 SusiStorageAreaRead
	7.78 SusiStorageAreaWrite
	7.79 SusiStorageAreaErase
	7.80 SusiStorageAreaEraseStatus
	7.81 SusiStorageAreaLock
	7.82 SusiStorageAreaUnlock
	7.83 SusiStorageAreaIsLocked

