

CFPRM/D
Rev. 2, 07/2001

ColdFire

®

 Family

Programmer’s Reference Manual

© Motorola Inc., 2001. All rights reserved.

ColdFire is a registered trademark and DigitalDNA is a trademark of Motorola, Inc.

I

2

C is a registered trademark of Philips Semiconductors

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can
and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must
be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in
which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or
use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola
and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed:

 Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140
or 1–800–441–2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan.
81–3–3440–3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T.,
Hong Kong. 852–26668334

Technical Information Center:

1–800–521–6274

HOME PAGE:

http://www.motorola.com/semiconductors

Document Comments

: FAX (512) 9335-2625, Attn: RISC Applications Engineering

World Wide Web Addresses

: http://www.motorola.com/PowerPC
http://www.motorola.com/NetComm
http://www.motorola.com/ColdFire

1

2

3

4

5

7

8

10

11

6

IND

Introduction

Addressing Capabilities

Instruction Set Summary

Integer User Instructions

MAC User Instructions

EMAC User Instructions

FPU User Instructions

Supervisor Instructions

Exception Processing

PST/DDATA Encodings

Index

12

Processor Instruction Summary

A

S-Record Output Format

9

Instruction Format Summary

Introduction

Addressing Capabilities

Instruction Set Summary

Integer User Instructions

MAC User Instructions

EMAC User Instructions

FPU User Instructions

Supervisor Instructions

Exception Processing

PST/DDATA Encodings

Index

Processor Instruction Summary

S-Record Output Format

Instruction Format Summary

1

2

3

4

5

7

8

10

11

6

IND

12

A

9

CONTENTS

Paragraph
Number Title Page

Number

Chapter 1
Introduction

1.1 Integer Unit User Programming Model .. 1-1
1.1.1 Data Registers (D0–D7).. 1-2
1.1.2 Address Registers (A0–A7) .. 1-2
1.1.3 Program Counter (PC) .. 1-2
1.1.4 Condition Code Register (CCR) ... 1-2
1.2 Floating-point Unit User Programming Model... 1-4
1.2.1 Floating-Point Data Registers (FP0–FP7) .. 1-4
1.2.1.1 Floating-Point Control Register (FPCR) .. 1-4
1.2.2 Floating-Point Status Register (FPSR) ... 1-5
1.2.3 Floating-Point Instruction Address Register (FPIAR).................................... 1-6
1.3 MAC User Programming Model .. 1-7
1.3.1 MAC Status Register (MACSR)... 1-7
1.3.2 MAC Accumulator (ACC).. 1-8
1.3.3 MAC Mask Register (MASK).. 1-8
1.4 EMAC User Programming Model .. 1-8
1.4.1 MAC Status Register (MACSR)... 1-8
1.4.2 MAC Accumulators (ACC[0:3]) .. 1-9
1.4.3 Accumulator Extensions (ACCext01, ACCext23) 1-11
1.4.4 MAC Mask Register (MASK).. 1-11
1.5 Supervisor Programming Model... 1-11
1.5.1 Status Register (SR).. 1-12
1.5.2 Supervisor/User Stack Pointers (A7 and OTHER_A7)................................ 1-13
1.5.3 Vector Base Register (VBR)... 1-14
1.5.4 Cache Control Register (CACR) .. 1-14
1.5.5 Address Space Identifier (ASID).. 1-14
1.5.6 Access Control Registers (ACR0–ACR3).. 1-14
1.5.7 MMU Base Address Register (MMUBAR) ... 1-14
1.5.8 RAM Base Address Registers (RAMBAR0/RAMBAR1) 1-15
1.5.9 ROM Base Address Registers (ROMBAR0/ROMBAR1) 1-15
1.5.10 Module Base Address Register (MBAR) ... 1-15
1.6 Integer Data Formats... 1-16
1.7 Floating-Point Data Formats... 1-16
1.7.1 Floating-Point Data Types .. 1-17
Contents v

CONTENTS

Paragraph
Number Title Page

Number

1.7.1.1 Normalized Numbers.. 1-17
1.7.1.2 Zeros ... 1-17
1.7.1.3 Infinities .. 1-17
1.7.1.4 Not-A-Number.. 1-18
1.7.1.5 Denormalized Numbers .. 1-18
1.7.2 FPU Data Format and Type Summary ... 1-18
1.8 Multiply Accumulate Data Formats.. 1-20
1.9 Organization of Data in Registers... 1-20
1.9.1 Organization of Integer Data Formats in Registers 1-20
1.9.2 Organization of Integer Data Formats in Memory 1-22

Chapter 2
Addressing Capabilities

2.1 Instruction Format... 2-1
2.2 Effective Addressing Modes... 2-2
2.2.1 Data Register Direct Mode ... 2-3
2.2.2 Address Register Direct Mode.. 2-3
2.2.3 Address Register Indirect Mode ... 2-3
2.2.4 Address Register Indirect with Postincrement Mode 2-4
2.2.5 Address Register Indirect with Predecrement Mode 2-4
2.2.6 Address Register Indirect with Displacement Mode 2-5
2.2.7 Address Register Indirect with Scaled Index and 8-Bit Displacement Mode 2-6
2.2.8 Program Counter Indirect with Displacement Mode...................................... 2-6
2.2.9 Program Counter Indirect with Scaled Index and 8-Bit Displacement Mode 2-7
2.2.10 Absolute Short Addressing Mode... 2-8
2.2.11 Absolute Long Addressing Mode ... 2-9
2.2.12 Immediate Data... 2-9
2.2.13 Effective Addressing Mode Summary.. 2-10
2.3 Stack.. 2-10

Chapter 3
Instruction Set Summary

3.1 Instruction Summary... 3-1
3.1.1 Data Movement Instructions... 3-4
3.1.2 Integer Arithmetic Instructions... 3-5
3.1.3 Logical Instructions .. 3-7
3.1.4 Shift Instructions... 3-7
3.1.5 Bit Manipulation Instructions ... 3-8
3.1.6 Program Control Instructions.. 3-8
3.1.7 System Control Instructions.. 3-10
vi ColdFire Family Programmer’s Reference Manual

CONTENTS

Paragraph
Number Title Page

Number

3.1.8 Cache Maintenance Instructions... 3-10
3.1.9 Floating Point Arithmetic Instructions ... 3-11
3.2 Instruction Set Additions .. 3-12

Chapter 4
Integer User Instructions

Chapter 5
Multiply-Accumulate Unit (MAC) User Instructions

Chapter 6
Enhanced Multiply-Accumulate Unit (EMAC) User Instructions

Chapter 7
Floating-Point Unit (FPU) User Instructions

7.1 Floating-Point Status Register (FPSR) ... 7-1
7.2 Conditional Testing... 7-3
7.3 Instruction Results when Exceptions Occur ... 7-6
7.4 Instruction Descriptions .. 7-7

Chapter 8
Supervisor (Privileged) Instructions

Chapter 9
Instruction Format Summary

9.1 Operation Code Map... 9-1

Chapter 10
PST/DDATA Encodings

10.1 User Instruction Set... 10-1
10.2 Supervisor Instruction Set... 10-7

Chapter 11
Exception Processing

11.1 Overview... 11-1
11.1.1 Supervisor/User Stack Pointers (A7 and OTHER_A7)................................ 11-4
Contents vii

CONTENTS

Paragraph
Number Title Page

Number

11.1.2 Exception Stack Frame Definition.. 11-4
11.1.3 Processor Exceptions .. 11-5
11.1.4 Floating-Point Arithmetic Exceptions .. 11-9
11.1.5 Branch/Set on Unordered (BSUN) ... 11-11
11.1.6 Input Not-A-Number (INAN)... 11-11
11.1.7 Input Denormalized Number (IDE).. 11-11
11.1.8 Operand Error (OPERR)... 11-12
11.1.9 Overflow (OVFL) ... 11-13
11.1.10 Underflow (UNFL) ... 11-13
11.1.11 Divide-by-Zero (DZ) .. 11-14
11.1.12 Inexact Result (INEX) .. 11-14
11.1.13 V4 Changes to the Exception Processing Model.. 11-15

Chapter 12
Processor Instruction Summary

Appendix A
S-Record Output Format

A.1 S-Record Content... A-1
A.2 S-Record Types.. A-2
A.3 S-Record Creation.. A-3
viii ColdFire Family Programmer’s Reference Manual

ILLUSTRATIONS

Figure
Number Title Page

 Number

1-1 ColdFire Family User Programming Model ... 1-2
1-2 Condition Code Register (CCR) ... 1-3
1-3 ColdFire Family Floating-point Unit User Programming Model 1-4
1-4 Floating-Point Control Register (FPCR) .. 1-4
1-5 Floating-Point Status Register (FPSR) ... 1-5
1-6 MAC Unit Programming Model... 1-7
1-7 MAC Status Register (MACSR)... 1-7
1-8 EMAC Programming Model... 1-8
1-9 MAC Status Register (MACSR)... 1-9
1-10 EMAC Fractional Alignment.. 1-10
1-11 EMAC Signed and Unsigned Integer Alignment ... 1-10
1-12 Accumulator 0 and 1 Extensions (ACCext01).. 1-11
1-13 Accumulator 2 and 3 Extensions (ACCext01).. 1-11
1-14 Supervisor Programming Model... 1-12
1-15 Status Register (SR).. 1-13
1-16 Vector Base Register (VBR)... 1-14
1-17 MMU Base Address Register (MMUBAR) ... 1-15
1-18 Module Base Address Register (MBAR) ... 1-16
1-19 Normalized Number Format ... 1-17
1-20 Zero Format .. 1-17
1-21 Infinity Format .. 1-17
1-22 Not-a-Number Format .. 1-18
1-23 Denormalized Number Format ... 1-18
1-24 Two’s Complement, Signed Fractional Equation... 1-20
1-25 Organization of Integer Data Format in Data Registers ... 1-21
1-26 Organization of Addresses in Address Registers.. 1-21
1-27 Memory Operand Addressing... 1-22
1-28 Memory Organization for Integer Operands... 1-22
2-1 Instruction Word General Format... 2-1
2-2 Instruction Word Specification Formats... 2-2
2-3 Data Register Direct.. 2-3
2-4 Address Register Direct .. 2-3
2-5 Address Register Indirect.. 2-4
2-6 Address Register Indirect with Postincrement.. 2-4
2-7 Address Register Indirect with Predecrement... 2-5
2-8 Address Register Indirect with Displacement... 2-5
Illustrations ix

ILLUSTRATIONS

Figure Title Page

Number Number
2-9 Address Register Indirect with Scaled Index and 8-Bit Displacement......................... 2-6
2-10 Program Counter Indirect with Displacement .. 2-7
2-11 Program Counter Indirect with Scaled Index and 8-Bit Displacement......................... 2-8
2-12 Absolute Short Addressing ... 2-8
2-13 Absolute Long Addressing ... 2-9
2-14 Immediate Data Addressing.. 2-9
2-15 Stack Growth from High Memory to Low Memory... 2-11
2-16 Stack Growth from Low Memory to High Memory... 2-11
7-1 Floating-Point Status Register (FPSR) ... 7-1
11-1 Exception Stack Frame ... 11-5
x ColdFire Family Programmer’s Reference Manual

TABLES

Table
Number Title Page

Number

1-1 CCR Bit Descriptions ... 1-3
1-2 FPCR Field Descriptions .. 1-5
1-3 FPSR Field Descriptions... 1-5
1-4 MACSR Field Descriptions .. 1-7
1-5 MACSR Field Descriptions .. 1-9
1-6 Implemented Supervisor Registers by Device.. 1-12
1-7 Status Field Descriptions .. 1-13
1-8 MMU Base Address Register Field Descriptions... 1-15
1-9 MBAR Field Descriptions .. 1-16
1-10 Integer Data Formats... 1-16
1-11 Real Format Summary .. 1-19
2-1 Instruction Word Format Field Definitions .. 2-2
2-2 Immediate Operand Location ... 2-9
2-3 Effective Addressing Modes and Categories.. 2-10
3-1 Notational Conventions .. 3-2
3-2 Data Movement Operation Format ... 3-5
3-3 Integer Arithmetic Operation Format ... 3-6
3-4 Logical Operation Format... 3-7
3-5 Shift Operation Format ... 3-8
3-6 Bit Manipulation Operation Format.. 3-8
3-7 Program Control Operation Format .. 3-9
3-8 System Control Operation Format .. 3-10
3-9 Cache Maintenance Operation Format ... 3-11
3-10 Dyadic Floating-Point Operation Format ... 3-11
3-11 Dyadic Floating-Point Operations .. 3-11
3-12 Monadic Floating-Point Operation Format... 3-12
3-13 Monadic Floating-Point Operations.. 3-12
3-14 ColdFire User Instruction Set Summary... 3-12
3-15 ColdFire Supervisor Instruction Set Summary ... 3-17
3-16 ColdFire ISA_B Additions Summary... 3-18
3-17 MAC Instruction Set Summary .. 3-19
3-18 EMAC Instruction Set Enhancements Summary.. 3-19
3-19 Floating-Point Instruction Set Summary .. 3-20
7-1 FPSR Field Descriptions... 7-1
7-2 FPSR EXC Bits... 7-3
7-3 FPCC Encodings... 7-4
Tables xi

TABLES

Table
Number Title Page

Number

7-4 Floating-Point Conditional Tests .. 7-5
7-5 FPCR EXC Byte Exception Enabled/Disabled Results.. 7-6
7-6 Data Format Encoding ... 7-8
8-1 State Frames.. 8-3
8-2 State Frames.. 8-5
8-3 ColdFire CPU Space Assignments ... 8-14
9-1 Operation Code Map... 9-1
10-1 PST/DDATA Specification for User-Mode Instructions.. 10-2
10-2 PST/DDATA Values for User-Mode Multiply-Accumulate Instructions 10-5
10-3 PST/DDATA Values for User-Mode Floating-Point Instructions.............................. 10-6
10-4 Data Markers and FPU Operand Format Specifiers ... 10-7
10-5 PST/DDATA Specifications for Supervisor-Mode Instructions 10-7
11-1 Exception Vector Assignments... 11-2
11-2 Format/Vector Word... 11-5
11-3 Exceptions... 11-6
11-4 Exception Priorities... 11-9
11-5 BSUN Exception Enabled/Disabled Results .. 11-11
11-6 INAN Exception Enabled/Disabled Results ... 11-11
11-7 IDE Exception Enabled/Disabled Results .. 11-12
11-8 Possible Operand Errors ... 11-12
11-9 OPERR Exception Enabled/Disabled Results .. 11-12
11-10 OVFL Exception Enabled/Disabled Results... 11-13
11-11 UNFL Exception Enabled/Disabled Results... 11-14
11-12 DZ Exception Enabled/Disabled Results.. 11-14
11-13 Inexact Rounding Mode Values.. 11-14
11-14 INEX Exception Enabled/Disabled Results.. 11-15
11-15 OEP EX Cycle Operations.. 11-16
12-1 Standard Products ... 12-1
12-2 ColdFire Instruction Set and Processor Cross-Reference... 12-2
12-3 ColdFire MAC and EMAC Instruction Sets... 12-4
12-4 ColdFire FPU Instruction Set ... 12-5
xii ColdFire Family Programmer’s Reference Manual

Chapter 1
Introduction
This manual contains detailed information about software instructions used by the Version
2 (V2), Version 3 (V3), and Version 4 (V4) ColdFire® microprocessors.

The ColdFire Family programming model consists of two register groups: user and
supervisor. Programs executing in the user mode use only the registers in the user group.
System software executing in the supervisor mode can access all registers and use the
control registers in the supervisor group to perform supervisor functions. The following
paragraphs provide a brief description of the registers in the user and supervisor models as
well as the data organization in the registers.

1.1 Integer Unit User Programming Model
Figure 1-1 illustrates the integer portion of the user programming model. It consists of the
following registers:

• 16 general-purpose 32-bit registers (D0–D7, A0–A7)

• 32-bit program counter (PC)

• 8-bit condition code register (CCR)
Chapter 1. Introduction 1-1

Integer Unit User Programming Model

Figure 1-1. ColdFire Family User Programming Model

1.1.1 Data Registers (D0–D7)

These registers are for bit, byte (8 bits), word (16 bits), and longword (32 bits) operations.
They can also be used as index registers.

1.1.2 Address Registers (A0–A7)

These registers serve as software stack pointers, index registers, or base address registers.
The base address registers can be used for word and longword operations. Register A7
functions as a hardware stack pointer during stacking for subroutine calls and exception
handling.

1.1.3 Program Counter (PC)

The program counter (PC) contains the address of the instruction currently executing.
During instruction execution and exception processing, the processor automatically
increments the contents or places a new value in the PC. For some addressing modes, the
PC can serve as a pointer for PC relative addressing.

1.1.4 Condition Code Register (CCR)

Consisting of 5 bits, the condition code register (CCR)—the status register’s lower byte—is
the only portion of the SR available in the user mode. Many integer instructions affect the
CCR and indicate the instruction’s result. Program and system control instructions also use
certain combinations of these bits to control program and system flow.

31 0
D0 Data registers
D1
D2
D3
D4
D5
D6
D7

31 0
A0 Address registers
A1
A2
A3
A4
A5
A6
A7 Stack pointer
PC Program counter
CCR Condition code register
1-2 ColdFire Family Programmer’s Reference Manual

Integer Unit User Programming Model

The condition codes meet two criteria:

1. Consistency across:

— Instructions, meaning that all instructions that are special cases of more general
instructions affect the condition codes in the same way;

— Uses, meaning that conditional instructions test the condition codes similarly and
provide the same results whether a compare, test, or move instruction sets the
condition codes; and

— Instances, meaning that all instances of an instruction affect the condition codes
in the same way.

2. Meaningful results with no change unless it provides useful information.

Bits [3:0] represent a condition of the result generated by an operation. Bit 5, the extend bit,
is an operand for multiprecision computations. Version 3 processors have an additional bit
in the CCR: bit 7, the branch prediction bit.

The CCR is illustrated in Figure 1-2.

Figure 1-2. Condition Code Register (CCR)

Table 1-1 describes CCR bits.

7 6 5 4 3 2 1 0

P1 — X N Z V C

1The P bit is implemented only on the V3 core.

Table 1-1. CCR Bit Descriptions

Bits Field Description

7 P Branch prediction (Version 3 only). Alters the static prediction algorithm used by the
branch acceleration logic in the instruction fetch pipeline on forward conditional
branches. Refer to a V3 core or device user’s manual for further information on this bit.

— Reserved, should be cleared (Versions 2 and 4).

6–5 — Reserved, should be cleared.

4 X Extend. Set to the value of the C-bit for arithmetic operations; otherwise not affected or
set to a specified result.

3 N Negative. Set if the most significant bit of the result is set; otherwise cleared.

2 Z Zero. Set if the result equals zero; otherwise cleared.

1 V Overflow. Set if an arithmetic overflow occurs implying that the result cannot be
represented in the operand size; otherwise cleared.

0 C Carry. Set if a carry out of the most significant bit of the operand occurs for an addition,
or if a borrow occurs in a subtraction; otherwise cleared.
Chapter 1. Introduction 1-3

Floating-Point Unit User Programming Model

1.2 Floating-Point Unit User Programming Model
The following paragraphs describe the registers for the optional ColdFire floating-point
unit. Figure 1-3 illustrates the user programming model for the floating-point unit. It
contains the following registers:

• 8 64-bit floating-point data registers (FP0–FP7)

• 32-bit floating-point control register (FPCR)

• 32-bit floating-point status register (FPSR)

• 32-bit floating-point instruction address register (FPIAR)

Figure 1-3. ColdFire Family Floating-Point Unit User Programming Model

1.2.1 Floating-Point Data Registers (FP0–FP7)
Floating-point data registers are analogous to the integer data registers for the
68K/ColdFire family. The 64-bit floating-point data registers always contain numbers in
double-precision format. All external operands, regardless of the source data format, are
converted to double-precision values before being used in any calculation or being stored
in a floating-point data register. A reset or a null-restore operation sets FP0–FP7 to positive,
nonsignaling not-a-numbers (NANs).

1.2.1.1 Floating-Point Control Register (FPCR)
The FPCR, Figure 1-4, contains an exception enable byte (EE) and a mode control byte
(MC). The user can read or write to FPCR using FMOVE or FRESTORE. A processor reset
or a restore operation of the null state clears the FPCR. When this register is cleared, the
FPU never generates exceptions.

Figure 1-4. Floating-Point Control Register (FPCR)

Table 1-2 describes FPCR fields.

63 31 0
FP0 Floating-point data registers
FP1
FP2
FP3
FP4
FP5
FP6
FP7
FPCR Floating-point control register
FPSR Floating-point status register
FPIAR Floating-point instruction address register

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

— BSUN INAN OPERR OVFL UNFL DZ INEX IDE — PREC RND —

Exception Enable Byte (EE) Mode Control Byte (MC)
1-4 ColdFire Family Programmer’s Reference Manual

Floating-Point Unit User Programming Model

1.2.2 Floating-Point Status Register (FPSR)
The FPSR, Figure 1-5, contains a floating-point condition code byte (FPCC), a
floating-point exception status byte (EXC), and a floating-point accrued exception byte
(AEXC). The user can read or write all FPSR bits. Execution of most floating-point
instructions modifies FPSR. FPSR is loaded by using FMOVE or FRESTORE. A processor
reset or a restore operation of the null state clears the FPSR.

Figure 1-5. Floating-Point Status Register (FPSR)

Table 1-3 describes FPSR fields.

Table 1-2. FPCR Field Descriptions

Bits Field Description

31–16 — Reserved, should be cleared.

15–8 EE Exception enable byte. Each EE bit corresponds to a floating-point exception class. The user can
separately enable traps for each class of floating-point exceptions.

15 BSUN Branch set on unordered

14 INAN Input not-a-number

13 OPERR Operand error

12 OVFL Overflow

11 UNFL Underflow

10 DZ Divide by zero

9 INEX Inexact operation

8 IDE Input denormalized

7–0 MC Mode control byte. Controls FPU operating modes.

7 — Reserved, should be cleared.

6 PREC Rounding precision

5–4 RND Rounding mode

3–0 — Reserved, should be cleared.

31 28 27 26 25 24 23 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

— N Z I NAN — BSUN INAN OPERR OVFL UNFL DZ INEX IDE IOP OVFL UNFL DZ INEX —

Table 1-3. FPSR Field Descriptions

Bits Field Description

31–24 FPCC Floating-point condition code byte. Contains four condition code bits that are set after completion
of all arithmetic instructions involving the floating-point data registers.

31–28 — Reserved, should be cleared.

27 N Negative

FPCC Exception Status Byte (EXC) AEXC Byte
Chapter 1. Introduction 1-5

Floating-Point Unit User Programming Model

1.2.3 Floating-Point Instruction Address Register (FPIAR)
The ColdFire operand execution pipeline can execute integer and floating-point
instructions simultaneously. As a result, the PC value stacked by the processor in response
to a floating-point exception trap may not point to the instruction that caused the exception.

For those FPU instructions that can generate exception traps, the 32-bit FPIAR is loaded
with the instruction PC address before the FPU begins execution. In case of an FPU
exception, the trap handler can use the FPIAR contents to determine the instruction that
generated the exception. FMOVE to/from the FPCR, FPSR, or FPIAR and FMOVEM
instructions cannot generate floating-point exceptions and so do not modify FPIAR. A reset
or a null-restore operation clears FPIAR.

26 FPPC
(cont.)

Z Zero

25 I Infinity

24 NAN Not-a-number

23–16 — Reserved, should be cleared.

15–8 EXC Exception status byte. Contains a bit for each floating-point exception that might have occurred
during the most recent arithmetic instruction or move operation.

15 BSUN Branch/set on unordered

14 INAN Input not-a-number

13 OPERR Operand error

12 OVFL Overflow

11 UNFL Underflow

10 DZ Divide by zero

9 INEX Inexact operation

8 IDE Input denormalization

7–0 AEXC Accrued exception byte. Contains 5 exception bits the IEEE 754 standard requires for
exception-disabled operations. These exceptions are logical combinations of bits in the EXC byte.
AEXC records all floating-point exceptions since the user last cleared AEXC.

7 IOP Invalid operation

6 OVFL Underflow

5 UNFL Divide By Zero

4 DZ Inexact Operation

3 INEX Input Denormalization

2–0 — Reserved, should be cleared.

Table 1-3. FPSR Field Descriptions (Continued)

Bits Field Description
1-6 ColdFire Family Programmer’s Reference Manual

MAC User Programming Model
1.3 MAC User Programming Model
The following paragraphs describe the registers for the optional ColdFire MAC unit.
Figure 1-6 illustrates the user programming model for the MAC unit. It contains the
following registers:

• 32-bit MAC status register (MACSR)

• 32-bit accumulator register (ACC)

• 32-bit MAC mask register (MASK)

Figure 1-6. MAC Unit Programming Model

1.3.1 MAC Status Register (MACSR)

The MACSR, shown in Figure 1-7, contains an operational mode field and a set of flags.

Table 1-4 describes MACSR fields.

31 0
MACSR MAC status register
ACC MAC accumulator
MASK MAC mask register

31 8 7 4 3 0

Operational Mode Flags

— OMC S/U F/I R/T N Z V C

Figure 1-7. MAC Status Register (MACSR)

Table 1-4. MACSR Field Descriptions

Bits Field Description

31-8 — Reserved, should be cleared.

7-4 OMF Operational mode field. Defines the operating configuration of the MAC unit.

7 OMC Overflow/saturation mode

6 S/U Signed/unsigned operations

5 F/I Fraction/integer mode

4 R/T Round/truncate mode

3–0 Flags Flags. Contains indicator flags from the last MAC instruction execution.

3 N Negative

2 Z Zero

1 V Overflow

0 C Carry. This field is always zero.
Chapter 1. Introduction 1-7

EMAC User Programming Model
1.3.2 MAC Accumulator (ACC)

This 32-bit register contains the results of MAC operations.

1.3.3 MAC Mask Register (MASK)

The mask register (MASK) is 32 bits of which only the low-order 16 bits are implemented.
When MASK is loaded, the low-order 16 bits of the source operand are loaded into the
register. When it is stored, the upper 16 bits are forced to all ones.

When used by an instruction, this register is ANDed with the specified operand address.
Thus, MASK allows an operand address to be effectively constrained within a certain range
defined by the 16-bit value. This feature minimizes the addressing support required for
filtering, convolution, or any routine that implements a data array as a circular queue using
the (Ay)+ addressing mode.

For MAC with load operations, the MASK contents can optionally be included in all
memory effective address calculations.

1.4 EMAC User Programming Model
The following paragraphs describe the registers for the optional ColdFire EMAC unit.
Figure 1-8 illustrates the user programming model for the EMAC unit. It contains the
following registers:

• One 32-bit MAC status register (MACSR) including four indicator bits signaling
product or accumulation overflow (one for each accumulator: PAV0–PAV3)

• Four 32-bit accumulators (ACCx = ACC0, ACC1, ACC2, ACC3)

• Eight 8-bit accumulator extensions (two per accumulator), packaged as two 32-bit
values for load and store operations (ACCext01, ACCext23)

• One 32-bit mask register (MASK)

Figure 1-8. EMAC Programming Model

1.4.1 MAC Status Register (MACSR)

Figure 1-9 shows the EMAC MACSR, which contains an operational mode field and two
sets of flags.

31 0
MACSR MAC status register
ACC0 MAC accumulator 0
ACC1 MAC accumulator 1
ACC2 MAC accumulator 2
ACC3 MAC accumulator 3
ACCext01 Extensions for ACC0 and ACC1
ACCext23 Extensions for ACC2 and ACC3
MASK MAC mask register
1-8 ColdFire Family Programmer’s Reference Manual

EMAC User Programming Model
Table 1-5 describes EMAC MACSR fields.

1.4.2 MAC Accumulators (ACC[0:3])

The EMAC implements four 48-bit accumulators. The 32-bit ACCx registers, along with
the accumulator extension words, contain the accumulator data. Figure 1-10 shows the data
contained by the accumulator and accumulator extension words when the EMAC is
operating in fractional mode. The upper 8 bits of the extended product are sign-extended
from the 40-bit result taken from the product.

31 12 11 10 9 8 7 6 5 4 3 2 1 0

Prod/acc overflow flags Operational Mode Flags

— PAV3 PAV2 PAV1 PAV0 OMC S/U F/I R/T N Z V EV

Figure 1-9. MAC Status Register (MACSR)

Table 1-5. MACSR Field Descriptions

Bits Field Description

31-12 — Reserved, should be cleared.

11-8 PAVx Product/accumulation overflow flags, one per accumulator

7-4 OMF Operational mode field. Defines the operating configuration of the EMAC unit.

7 OMC Overflow/saturation mode

6 S/U Signed/unsigned operations

5 F/I Fraction/integer mode

4 R/T Round/truncate mode

3–0 Flags Flags. Contains indicator flags from the last MAC instruction execution.

3 N Negative

2 Z Zero

1 V Overflow

0 C Carry. This field is always zero.
Chapter 1. Introduction 1-9

EMAC User Programming Model
Figure 1-10. EMAC Fractional Alignment

Figure 1-11 shows the data contained by the accumulator and accumulator extension words
when the EMAC is operating in signed or unsigned integer mode. In signed mode, the upper
8 bits of the extended product are sign extended from the 40-bit result taken from the
product. In unsigned mode, the upper 8 bits of the extended product are all zeros.

Figure 1-11. EMAC Signed and Unsigned Integer Alignment

X

Operand Y

Operand X

Product

Extended Product

Accumulator

32

Upper Extension Byte [7:0]

Lower Extension Byte [7:0]

Accumulator [31:0]

+

32

40 24

408

328 8

X

Operand Y

Operand X

Product

Extended Product

Accumulator

32

Upper Extension Byte [7:0]

Lower Extension Byte [7:0]

Accumulator [31:0]

+

32

24 32

328 8

328 8

8

1-10 ColdFire Family Programmer’s Reference Manual

Supervisor Programming Model
1.4.3 Accumulator Extensions (ACCext01, ACCext23)

The 32-bit accumulator extension registers (ACCext01, ACCext23) allow the complete
contents of the 48-bit accumulator to be saved and restored on context switches.
Figure 1-12 shows how the ACC0 and ACC1 data is stored when loaded into a register.
Refer to Figure 1-10 and Figure 1-11 for information on the data contained in the extension
bytes.

Figure 1-13 shows how the ACC2 and ACC3 data is stored when loaded into a register.
Refer to Figure 1-10 and Figure 1-11 for information on the data contained in the extension
bytes.

1.4.4 MAC Mask Register (MASK)

Only the low-order 16 bits of the 32-bit mask register (MASK) are implemented. When
MASK is loaded, the low-order 16 bits of the source operand are loaded into the register.
When it is stored, the upper 16 bits are forced to all ones.

When used by an instruction, MASK is ANDed with the specified operand address. Thus,
MASK allows an operand address to be effectively constrained within a certain range
defined by the 16-bit value. This feature minimizes the addressing support required for
filtering, convolution, or any routine that implements a data array as a circular queue using
the (Ay)+ addressing mode.

For MAC with load operations, the MASK contents can optionally be included in all
memory effective address calculations.

1.5 Supervisor Programming Model
System programmers use the supervisor programming model to implement operating
system functions. All accesses that affect the control features of ColdFire processors must
be made in supervisor mode. The following paragraphs briefly describe the supervisor
registers, which can be accessed only by privileged instructions. The supervisor
programming model consists of the registers available to users as well as the registers listed
in Figure 1-14.

31 24 23 16 15 8 7 0

ACC1 Upper
Extension Byte

ACC1 Lower
Extension Byte

ACC0 Upper
Extension Byte

ACC0 Lower
Extension Byte

Figure 1-12. Accumulator 0 and 1 Extensions (ACCext01)

31 24 23 16 15 8 7 0

ACC3 Upper
Extension Byte

ACC3 Lower
Extension Byte

ACC2 Upper
Extension Byte

ACC2 Lower
Extension Byte

Figure 1-13. Accumulator 2 and 3 Extensions (ACCext01)
Chapter 1. Introduction 1-11

Supervisor Programming Model
Figure 1-14. Supervisor Programming Model

Note that not all registers are implemented on every ColdFire device; refer to Table 1-6.
Future devices will implement registers that are not implemented on current devices.

1.5.1 Status Register (SR)

The SR, shown in Figure 1-15, stores the processor status, the interrupt priority mask, and
other control bits. Supervisor software can read or write the entire SR; user software can
read or write only SR[7–0], described in Section 1.1.4, “Condition Code Register (CCR).”
The control bits indicate processor states: trace mode (T), supervisor or user mode (S), and
master or interrupt state (M). SR is set to 0x27xx after reset.

31 19 15 0
(CCR) SR Status register

OTHER_A7 Supervisor A7 stack pointer
Must be zeros VBR Vector base register

CACR Cache control register
ASID Address space ID register
ACR0 Access control register 0 (data)
ACR1 Access control register 1 (data)
ACR2 Access control register 2 (instruction)
ACR3 Access control register 3 (instruction)
MMUBAR MMU base address register
ROMBAR0 ROM base address register 0
ROMBAR1 ROM base address register 1
RAMBAR0 RAM base address register 0
RAMBAR1 RAM base address register 1
MBAR Module base address register

Table 1-6. Implemented Supervisor Registers by Device

Name 5202 5204
5206

5206e
5272 5307 5407

SR √ √ √ √ √ √

OTHER_A7

VBR √ √ √ √ √ √

CACR √ √ √ √ √ √

ASID

ACR0 √ √ √ √ √ √

ACR1 √ √ √ √ √ √

ACR2 √

ACR3 √

MMUBAR

ROMBAR0

ROMBAR1

RAMBAR0 √ √ √ √ √

RAMBAR1 √

MBAR √ √ √ √ √
1-12 ColdFire Family Programmer’s Reference Manual

Supervisor Programming Model
Table 1-7 describes SR fields.

1.5.2 Supervisor/User Stack Pointers (A7 and OTHER_A7)

The V2 and V3 architectures support a single stack pointer (A7). The initial value of A7 is
loaded from the reset exception vector, address offset 0.

The V4 architecture supports two independent stack pointer (A7) registers: the supervisor
stack pointer (SSP) and the user stack pointer (USP). This support provides the required
isolation between operating modes as dictated by the virtual memory management scheme
provided by the memory management unit (MMU). (Note that a device without an MMU,
such as V2 and V3, has a single stack pointer.)

The hardware implementation of these two programmable-visible 32-bit registers does not
uniquely identify one as the SSP and the other as the USP. Rather, the hardware uses one
32-bit register as the currently active A7 and the other as OTHER_A7. Thus, the register
contents are a function of the processor operating mode, as shown in the following:

if SR[S] = 1
then

A7 = Supervisor Stack Pointer
other_A7 = User Stack Pointer

else
A7 = User Stack Pointer
other_A7 = Supervisor Stack Pointer

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

System byte Condition code register (CCR)

T — S M — I P1 — X N Z V C

1The P bit is implemented only on the V3 core.

Figure 1-15. Status Register (SR)

Table 1-7. Status Field Descriptions

Bits Name Description

15 T Trace enable. When T is set, the processor performs a trace exception after every instruction.

14 — Reserved, should be cleared.

13 S Supervisor/user state. Indicates whether the processor is in supervisor or user mode

12 M Master/interrupt state. Cleared by an interrupt exception. It can be set by software during execution
of the RTE or move to SR instructions so the OS can emulate an interrupt stack pointer.

11 — Reserved, should be cleared.

10–8 I Interrupt priority mask. Defines the current interrupt priority. Interrupt requests are inhibited for all
priority levels less than or equal to the current priority, except the edge-sensitive level-7 request,
which cannot be masked.

7–0 CCR Condition code register (see Figure 1-2 and Table 1-1)
Chapter 1. Introduction 1-13

Supervisor Programming Model
1.5.3 Vector Base Register (VBR)

The vector base register contains the 1 MByte-aligned base address of the exception vector
table in memory. The displacement of an exception vector adds to the value in this register,
which accesses the vector table. VBR[19–0] are filled with zeros.

1.5.4 Cache Control Register (CACR)

The CACR controls operation of both the instruction and data cache memory. It includes
bits for enabling, freezing, and invalidating cache contents. It also includes bits for defining
the default cache mode and write-protect fields. Bit functions and positions may vary
among ColdFire processor implementations. Refer to a specific device or core user’s
manual for further information.

1.5.5 Address Space Identifier (ASID)

Only the low-order 8 bits of the 32-bit ASID register are implemented. The ASID value is
an 8-bit identifier assigned by the operating system to each process active in the system. It
effectively serves as an extension to the 32-bit virtual address. Thus, the virtual reference
now becomes a 40-bit value: the 8-bit ASID concatenated with the 32-bit virtual address.
ASID is only available if a device has an MMU. Refer to a specific device or core user’s
manual for further information.

1.5.6 Access Control Registers (ACR0–ACR3)

The access control registers (ACR[0:3]) define attributes for four user-defined memory
regions. ACR0 and ACR1 control data memory space and ACR2 and ACR3 control
instruction memory space. Attributes include definition of cache mode, write protect, and
buffer write enables. Not all ColdFire processors implement all four ACRs. Bit functions
and positions may vary among ColdFire processor implementations. Refer to a specific
device or core user’s manual for further information.

1.5.7 MMU Base Address Register (MMUBAR)

MMUBAR, shown in Figure 1-17, defines a memory-mapped, privileged data-only space
with the highest priority in effective address attribute calculation for the data internal
memory bus (that is, the MMUBAR has priority over RAMBAR0). If virtual mode is
enabled, any normal mode access that does not hit in the MMUBAR, RAMBARs,
ROMBARs, or ACRs is considered a normal-mode, virtual address request and generates
its access attributes from the MMU. MMUBAR is only available if a device has an MMU.

31 20 19 0

Exception vector table base address —

Figure 1-16. Vector Base Register (VBR)
1-14 ColdFire Family Programmer’s Reference Manual

Supervisor Programming Model
Refer to a specific device or core user’s manual for further information.

Table 1-8 describes MMU base address register fields.

1.5.8 RAM Base Address Registers (RAMBAR0/RAMBAR1)

RAMBAR registers determine the base address of the internal SRAM modules and indicate
the types of references mapped to each. Each RAMBAR includes a base address,
write-protect bit, address space mask bits, and an enable bit. RAM base address alignment
is implementation specific. A specific ColdFire processor may implement 2, 1, or 0
RAMBARs. Bit functions and positions can vary among ColdFire processor
implementations. Refer to a specific device or core user’s manual for further information.

1.5.9 ROM Base Address Registers (ROMBAR0/ROMBAR1)

ROMBAR registers determine the base address of the internal ROM modules and indicate
the types of references mapped to each. Each ROMBAR includes a base address,
write-protect bit, address space mask bits, and an enable bit. ROM base address alignment
is implementation specific. A specific ColdFire processor may implement 2, 1, or 0
ROMBARs. Bit functions and positions can vary among ColdFire processor
implementations. Refer to a specific device or core user’s manual for further information.

1.5.10 Module Base Address Register (MBAR)

The supervisor-level MBAR, Figure 1-18, specifies the base address and allowable access
types for all internal peripherals. MBAR can be read or written through the debug module
as a read/write register; only the debug module can read MBAR. All internal peripheral
registers occupy a single relocatable memory block along 4-Kbyte boundaries. MBAR
masks specific address spaces using the address space fields. Refer to a specific device or
core user’s manual for further information.

31 16 15 1 0

BA — V

Figure 1-17. MMU Base Address Register

Table 1-8. MMU Base Address Register Field Descriptions

Bits Name Description

31–16 BA Base address. Defines the base address for the 64-Kbyte address space mapped to the MMU.

15–1 — Reserved, should be cleared.

0 V Valid
Chapter 1. Introduction 1-15

Integer Data Formats
Table 1-9 describes MBAR fields.

1.6 Integer Data Formats
The operand data formats are supported by the integer unit, as listed in Table 1-10. Integer
unit operands can reside in registers, memory, or instructions themselves. The operand size
for each instruction is either explicitly encoded in the instruction or implicitly defined by
the instruction operation.

1.7 Floating-Point Data Formats
This section describes the optional FPU’s operand data formats. The FPU supports three
signed integer formats (byte, word, and longword) that are identical to those supported by

31 12 11 9 8 7 6 5 4 3 2 1 0

BA — WP — AM C/I SC SD UC UD V

Figure 1-18. Module Base Address Register (MBAR)

Table 1-9. MBAR Field Descriptions

Bits Field Description

31–12 BA Base address. Defines the base address for a 4-Kbyte address range.

11–9 — Reserved, should be cleared.

8–1 AMB Attribute mask bits

8 WP Write protect. Mask bit for write cycles in the MBAR-mapped register address range

7 — Reserved, should be cleared.

6 AM Alternate master mask

5 C/I Mask CPU space and interrupt acknowledge cycles

4 SC Setting masks supervisor code space in MBAR address range

3 SD Setting masks supervisor data space in MBAR address range

2 UC Setting masks user code space in MBAR address range

1 UD Setting masks user data space in MBAR address range

0 V Valid. Determines whether MBAR settings are valid.

Table 1-10. Integer Data Formats

Operand Data Format Size

Bit 1 bit

Byte integer 8 bits

Word integer 16 bits

Longword integer 32 bits

Attribute Mask Bits
1-16 ColdFire Family Programmer’s Reference Manual

Floating-Point Data Formats
the integer unit. The FPU also supports single- and double-precision binary floating-point
formats that fully comply with the IEEE-754 standard.

1.7.1 Floating-Point Data Types
Each floating-point data format supports five unique data types: normalized numbers,
zeros, infinities, NANs, and denormalized numbers. The normalized data type, Figure 1-19,
never uses the maximum or minimum exponent value for a given format.

1.7.1.1 Normalized Numbers
Normalized numbers include all positive or negative numbers with exponents between the
maximum and minimum values. For single- and double-precision normalized numbers, the
implied integer bit is one and the exponent can be zero.

Figure 1-19. Normalized Number Format

1.7.1.2 Zeros
Zeros can be positive or negative and represent real values, + 0.0 and – 0.0. See Figure 1-20.

Figure 1-20. Zero Format

1.7.1.3 Infinities
Infinities can be positive or negative and represent real values that exceed the overflow
threshold. A result’s exponent greater than or equal to the maximum exponent value
indicates an overflow for a given data format and operation. This overflow description
ignores the effects of rounding and the user-selectable rounding models. For single- and
double-precision infinities, the fraction is a zero. See Figure 1-21.

Figure 1-21. Infinity Format

Min < Exponent < Max Fraction = Any bit pattern

Sign of Mantissa, 0 or 1

Exponent = 0 Fraction = 0

Sign of Mantissa, 0 or 1

Exponent = Maximum Fraction = 0

Sign of Mantissa, 0 or 1
Chapter 1. Introduction 1-17

Floating-Point Data Formats
1.7.1.4 Not-A-Number
When created by the FPU, NANs represent the results of operations having no
mathematical interpretation, such as infinity divided by infinity. Operations using a NAN
operand as an input return a NAN result. User-created NANs can protect against
uninitialized variables and arrays or can represent user-defined data types. See Figure 1-22.

Figure 1-22. Not-a-Number Format

If an input operand to an operation is a NAN, the result is an FPU-created default NAN.
When the FPU creates a NAN, the NAN always contains the same bit pattern in the
mantissa: all mantissa bits are ones and the sign bit is zero. When the user creates a NAN,
any nonzero bit pattern can be stored in the mantissa and the sign bit.

1.7.1.5 Denormalized Numbers
Denormalized numbers represent real values near the underflow threshold. Denormalized
numbers can be positive or negative. For denormalized numbers in single- and
double-precision, the implied integer bit is a zero. See Figure 1-23.

Figure 1-23. Denormalized Number Format

Traditionally, the detection of underflow causes floating-point number systems to perform
a flush-to-zero. The IEEE-754 standard implements gradual underflow: the result mantissa
is shifted right (denormalized) while the result exponent is incremented until reaching the
minimum value. If all the mantissa bits of the result are shifted off to the right during this
denormalization, the result becomes zero.

Denormalized numbers are not supported directly in the hardware of this implementation
but can be handled in software if needed (software for the input denorm exception could be
written to handle denormalized input operands, and software for the underflow exception
could create denormalized numbers). If the input denorm exception is disabled, all
denormalized numbers are treated as zeros.

1.7.2 FPU Data Format and Type Summary
Table 1-11 summarizes the data type specifications for byte, word, longword, single-, and
double-precision data formats.

Exponent = Maximum Fraction = Any nonzero bit pattern

Sign of Mantissa, 0 or 1

Exponent = 0 Fraction = Any nonzero bit pattern

Sign of Mantissa, 0 or 1
1-18 ColdFire Family Programmer’s Reference Manual

Floating-Point Data Formats
Table 1-11. Real Format Summary

Parameter Single-Precision Double-Precision

Data Format

Field Size in Bits

Sign (s) 1 1

Biased exponent (e) 8 11

Fraction (f) 23 52

Total 32 64

Interpretation of Sign

Positive fraction s = 0 s = 0

Negative fraction s = 1 s = 1

Normalized Numbers

Bias of biased exponent +127 (0x7F) +1023 (0x3FF)

Range of biased exponent 0 < e < 255 (0xFF) 0 < e < 2047 (0x7FF)

Range of fraction Zero or Nonzero Zero or Nonzero

Mantissa 1.f 1.f

Relation to representation of real numbers (–1)s × 2e–127 × 1.f (–1)s × 2e–1023 × 1.f

Denormalized Numbers

Biased exponent format minimum 0 (0x00) 0 (0x000)

Bias of biased exponent +126 (0x7E) +1022 (0x3FE)

Range of fraction Nonzero Nonzero

Mantissa 0.f 0.f

Relation to representation of real numbers (–1)s × 2–126 × 0.f (–1)s × 2–1022 × 0.f

Signed Zeros

Biased exponent format minimum 0 (0x00) 0 (0x00)

Mantissa 0.f = 0.0 0.f = 0.0

Signed Infinities

Biased exponent format maximum 255 (0xFF) 2047 (0x7FF)

Mantissa 0.f = 0.0 0.f = 0.0

NANs

Sign Don’t care 0 or 1

Biased exponent format maximum 255 (0xFF) 255 (0x7FF)

Fraction Nonzero Nonzero

s e f
31 30 23 22 0

s e f
63 62 52 51 0
Chapter 1. Introduction 1-19

Multiply Accumulate Data Formats
1.8 Multiply Accumulate Data Formats
The MAC and EMAC units support 16- or 32-bit input operands of the following formats:

• Two’s complement signed integers: In this format, an N-bit operand value lies in the

range -2(N-1) < operand < 2(N-1) - 1. The binary point is right of the lsb.

• Unsigned integers: In this format, an N-bit operand value lies in the range 0 <

operand < 2N - 1. The binary point is right of the lsb.

• Two’s complement, signed fractionals: In an N-bit number, the first bit is the sign
bit. The remaining bits signify the first N-1 bits after the binary point. Given an N-bit
number, aN-1aN-2aN-3... a2a1a0, its value is given by the equation in Figure 1-24.

Figure 1-24. Two’s Complement, Signed Fractional Equation

This format can represent numbers in the range -1 < operand < 1 - 2(N-1).

For words and longwords, the largest negative number that can be represented is -1, whose
internal representation is 0x8000 and 0x8000_0000, respectively. The largest positive word
is 0x7FFF or (1 - 2-15); the most positive longword is 0x7FFF_FFFF or (1 - 2-31).

1.9 Organization of Data in Registers
This section describes data organization within the data, address, and control registers.

1.9.1 Organization of Integer Data Formats in Registers

Each integer data register is 32 bits wide. Byte and word operands occupy the lower 8- and
16-bit portions of integer data registers, respectively. Longword operands occupy entire
data registers. A data register that is either a source or destination operand only uses or

Representation of fraction
Nonzero bit pattern created by user
Fraction when created by FPU

xxxxx…xxxx
11111…1111

xxxxx…xxxx
11111…1111

Approximate Ranges

Maximum positive normalized 3.4 × 1038 1.8 x 10308

Minimum positive normalized 1.2 × 10–38 2.2 x 10–308

Minimum positive denormalized 1.4 × 10–45 4.9 x 10–324

Table 1-11. Real Format Summary (Continued)

Parameter Single-Precision Double-Precision

value 1 aN 1–⋅()– 2
i 1 N–+()

ai⋅
i 0=

N 2–

∑+=
1-20 ColdFire Family Programmer’s Reference Manual

Organization of Data in Registers
changes the appropriate lower 8 or 16 bits (in byte or word operations, respectively). The
remaining high-order portion does not change and is unused and unchanged. The address
of the least significant bit (lsb) of a longword integer is zero, and the most significant bit
(msb) is 31. Figure 1-25 illustrates the organization of integer data in data registers.

Because address registers and stack pointers are 32 bits wide, address registers cannot be
used for byte-size operands. When an address register is a source operand, either the
low-order word or the entire longword operand is used, depending on the operation size.
When an address register is the destination operand, the entire register becomes affected,
despite the operation size. If the source operand is a word size, it is sign-extended to 32 bits
and then used in the operation to an address-register destination. Address registers are
primarily for addresses and address computation support. The instruction set explains how
to add to, compare, and move the contents of address registers. Figure 1-26 illustrates the
organization of addresses in address registers.

Control registers vary in size according to function. Some control registers have undefined
bits reserved for future definition by Motorola. Those particular bits read as zeros and must
be written as zeros for future compatibility.

All operations to the SR and CCR are word-size operations. For all CCR operations, the
upper byte is read as all zeros and is ignored when written, despite privilege mode. The
write-only MOVEC instruction writes to the system control registers (VBR, CACR, etc.).

31 30 1 0

msb lsb Bit (0 ≤ bit number ≤ 31)

31 8 7 6 1 0

Not used msb Low order byte lsb Byte (8 bits)

31 16 15 14 1 0

Not used msb Lower order word lsb Word (16 bits)

31 30 1 0

msb Longword lsb Longword (32 bits)

Figure 1-25. Organization of Integer Data Format in Data Registers

31 16 15 0

Sign-Extended 16-Bit Address Operand

31 0

Full 32-Bit Address Operand

Figure 1-26. Organization of Addresses in Address Registers
Chapter 1. Introduction 1-21

Organization of Data in Registers
1.9.2 Organization of Integer Data Formats in Memory

The byte-addressable organization of memory allows lower addresses to correspond to
higher order bytes. The address N of a longword data item corresponds to the address of the
MSB of the highest order word. The lower order word is located at address N + 2, leaving
the LSB at address N + 3 (see Figure 1-27). The lowest address (nearest 0x00000000) is the
location of the MSB, with each successive LSB located at the next address (N + 1, N + 2,
etc.). The highest address (nearest 0xFFFFFFFF) is the location of the LSB.

Figure 1-28 illustrates the organization of data formats in memory. A base address that
selects one byte in memory—the base byte—specifies a bit number that selects one bit, the
bit operand, in the base byte. The msb of the byte is 7.

31 24 23 16 15 8 7 0

Longword 0x0000_0000
Word 0x0000_0000 Word 0x0000_0002

Byte 0x0000_0000 Byte 0x0000_0001 Byte 0x0000_0002 Byte 0x0000_0003
Longword 0x0000_0004

Word 0x0000_0004 Word 0x0000_0006
Byte 0x0000_0004 Byte 0x0000_0005 Byte 0x0000_0006 Byte 0x0000_0007

. . .

. . .

. . .

Longword 0xFFFF_FFFC
Word 0xFFFF_FFFC Word 0xFFFF_FFFE

Byte 0xFFFF_FFFC Byte 0xFFFF_FFFD Byte 0xFFFF_FFFE Byte 0xFFFF_FFFF

Figure 1-27. Memory Operand Addressing

7 0 7 0 7 0 7 0

Byte n-1 7 6 5 4 3 2 1 0 Byte n+1 Byte n+2 Bit Data

 Base Address Bit Number

7 0 7 0 7 0 7 0

Byte n-1 msb Byte n lsb Byte n+1 Byte n+2 Byte Data

Address

7 0 15 0 7 0 7 0

Byte n-1 msb Word Integer lsb Byte n+2 Byte n+3 Word Data

Address

7 0 31 0 7 0

Byte n-1 msb Longword Integer lsb Byte n+4 Longword
Data

Address

Figure 1-28. Memory Organization for Integer Operands
1-22 ColdFire Family Programmer’s Reference Manual

Chapter 2
Addressing Capabilities

Most operations compute a source operand and destination operand and store the result in
the destination location. Single-operand operations compute a destination operand and
store the result in the destination location. External microprocessor references to memory
are either program references that refer to program space or data references that refer to
data space. They access either instruction words or operands (data items) for an instruction.
Program space is the section of memory that contains the program instructions and any
immediate data operands residing in the instruction stream. Data space is the section of
memory that contains the program data. The program-counter relative addressing modes
can be classified as data references.

2.1 Instruction Format
ColdFire Family instructions consist of 1 to 3 words. Figure 2-1 illustrates the general
composition of an instruction. The first word of the instruction, called the operation word
or opword, specifies the length of the instruction, the effective addressing mode, and the
operation to be performed. The remaining words further specify the instruction and
operands. These words can be conditional predicates, immediate operands, extensions to
the effective addressing mode specified in the operation word, branch displacements, bit
number or special register specifications, trap operands, argument counts, or floating-point
command words. The ColdFire architecture instruction word length is limited to 3 sizes:
16, 32, or 48 bits.

Figure 2-1. Instruction Word General Format

An instruction specifies the function to be performed with an operation code and defines
the location of every operand. The operation word format is the basic instruction word (see
Figure 2-2). The encoding of the mode field selects the addressing mode. The register field
contains the general register number or a value that selects the addressing mode when the

Operation Word
(One Word, Specifies Operation and Modes)

Extension Word (If Any)

Extension Word (If Any)
Chapter 2. Addressing Capabilities 2-1

Effective Addressing Modes
mode field = 111. Some indexed or indirect addressing modes use a combination of the
operation word followed by an extension word. Figure 2-2 illustrates two formats used in
an instruction word; Table 2-1 lists the field definitions.

2.2 Effective Addressing Modes
Besides the operation code that specifies the function to be performed, an instruction
defines the location of every operand for the function. Instructions specify an operand
location in one of the three following ways:

• A register field within an instruction can specify the register to be used.

• An instruction’s effective address field can contain addressing mode information.

Operation Word Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X Effective Address

Mode Register

Extension Word Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D/A Register W/L Scale 0 Displacement

Figure 2-2. Instruction Word Specification Formats

Table 2-1 defines instruction word formats.

Table 2-1. Instruction Word Format Field Definitions

Field Definition

Instruction

Mode Addressing mode (see Table 2-3)

Register General register number (see Table 2-3)

Extensions

D/A Index register type
0 = Dn
1 = An

W/L Word/longword index size
0 = Address Error Exception
1 = Longword

Scale Scale factor
00 = 1
01 = 2
10 = 4
11 = 8 (supported only if FPU is present)
2-2 ColdFire Family Programmer’s Reference Manual

Effective Addressing Modes
• The instruction’s definition can imply the use of a specific register. Other fields
within the instruction specify whether the register selected is an address or data
register and how the register is to be used.

An instruction’s addressing mode specifies the value of an operand, a register that contains
the operand, or how to derive the effective address of an operand in memory. Each
addressing mode has an assembler syntax. Some instructions imply the addressing mode
for an operand. These instructions include the appropriate fields for operands that use only
one addressing mode.

2.2.1 Data Register Direct Mode

In the data register direct mode, the effective address field specifies the data register
containing the operand.

Figure 2-3. Data Register Direct

2.2.2 Address Register Direct Mode

In the address register direct mode, the effective address field specifies the address register
containing the operand.

Figure 2-4. Address Register Direct

2.2.3 Address Register Indirect Mode

In the address register indirect mode, the operand is in memory. The effective address field
specifies the address register containing the address of the operand in memory.

OperandData Register

Generation
Assembler Syntax
EA Mode Field
EA Register Field
Number of Extension Words

EA = Dn
Dn
000
Register number
0

OperandAddress Register

Generation
Assembler Syntax
EA Mode Field
EA Register Field
Number of Extension Words

EA = An
An
001
Register number
0

Chapter 2. Addressing Capabilities 2-3

Effective Addressing Modes
Figure 2-5. Address Register Indirect

2.2.4 Address Register Indirect with Postincrement Mode

In the address register indirect with postincrement mode, the operand is in memory. The
effective address field specifies the address register containing the address of the operand
in memory. After the operand address is used, it is incremented by one, two, or four,
depending on the size of the operand (i.e., byte, word, or longword, respectively). Note that
the stack pointer (A7) is treated exactly like any other address register.

Figure 2-6. Address Register Indirect with Postincrement

2.2.5 Address Register Indirect with Predecrement Mode

In the address register indirect with predecrement mode, the operand is in memory. The
effective address field specifies the address register containing the address of the operand
in memory. Before the operand address is used, it is decremented by one, two, or four
depending on the operand size (i.e., byte, word, or longword, respectively). Note that the
stack pointer (A7) is treated just like the other address registers.

Operand

Operand Pointer

31 0

Address Register

Memory

Points to

Generation
Assembler Syntax
EA Mode Field
EA Register Field
Number of Extension Words

EA = (An)
(An)
010
Register number
0

Operand

Contents

Contents

Size +

31 0

31 0

Address Register

Operand Length

Operand Pointer

Memory

Points to

Generation
Assembler Syntax
EA Mode Field
EA Register Field
Number of Extension Words

EA = (An); An = An + Size
(An)+
011
Register number
0

(1, 2, or 4)
2-4 ColdFire Family Programmer’s Reference Manual

Effective Addressing Modes
Figure 2-7. Address Register Indirect with Predecrement

2.2.6 Address Register Indirect with Displacement Mode

In the address register indirect with displacement mode, the operand is in memory. The
operand address in memory consists of the sum of the address in the address register, which
the effective address specifies, and the sign-extended 16-bit displacement integer in the
extension word. Displacements are always sign-extended to 32 bits prior to being used in
effective address calculations.

Figure 2-8. Address Register Indirect with Displacement

Operand

Contents

Contents

Size –

31 0

31 0

Address Register

Operand Length

Operand Pointer

Memory

Points to

Generation
Assembler Syntax
EA Mode Field
EA Register Field
Number of Extension Words

EA = (An) - Size; An = An - Size;
–(An)
100
Register number
0

(1, 2, or 4)

Operand

Contents

Contents

Sign-Extension Integer +

31 0

31 0

31 015

Address Register

Displacement

Operand Pointer

Memory

Points to

Generation
Assembler Syntax
EA Mode Field
EA Register Field
Number of Extension Words

EA = (An) + d16
(d16,An)
101
Register number
1

Chapter 2. Addressing Capabilities 2-5

Effective Addressing Modes
2.2.7 Address Register Indirect with Scaled Index and 8-Bit
Displacement Mode

This addressing mode requires one extension word that contains an index register indicator,
possibly scaled, and an 8-bit displacement. The index register indicator includes size and
scale information. In this mode, the operand is in memory. The operand address is the sum
of the address register contents; the sign-extended displacement value in the extension
word’s low-order 8 bits; and the scaled index register’s sign-extended contents. Users must
specify the address register, the displacement, the scale factor and the index register in this
mode.

Figure 2-9. Address Register Indirect with Scaled Index and 8-Bit Displacement

2.2.8 Program Counter Indirect with Displacement Mode

In this mode, the operand is in memory. The address of the operand is the sum of the address
in the program counter (PC) and the sign-extended 16-bit displacement integer in the
extension word. The value in the PC is the address of the extension word (PC+2). This is a
program reference allowed only for reads.

Operand

Contents

Contents

Sign-Extended Value

Sign-Extension Integer +

+Scale Value X

31 0

31 0

31 0

31 0

7

Address Register

Displacement

Index Register

Scale

Operand Pointer

Memory

Points to

Generation
Assembler Syntax
EA Mode Field
EA Register Field
Number of Extension Words

EA = (An) + ((Xi) * ScaleFactor)) + Sign-extended d8
(d8,An,Xi,Size*Scale)
110
Register number
1

2-6 ColdFire Family Programmer’s Reference Manual

Effective Addressing Modes
Figure 2-10. Program Counter Indirect with Displacement

2.2.9 Program Counter Indirect with Scaled Index and 8-Bit
Displacement Mode

This mode is similar to the mode described in Section 2.2.7, “Address Register Indirect
with Scaled Index and 8-Bit Displacement Mode,” except the PC is the base register. The
operand is in memory. The operand address is the sum of the address in the PC, the
sign-extended displacement integer in the extension word’s lower 8 bits, and the sized,
scaled, and sign-extended index operand. The value in the PC is the address of the extension
word (PC + 2). This is a program reference allowed only for reads. Users must include the
displacement, the scale, and the index register when specifying this addressing mode.

Operand

Contents

Contents

Sign-Extension Integer +

31 0

31 0

31 015

Program Counter

Displacement

Operand Pointer

Memory

Points to

Generation
Assembler Syntax
EA Mode Field
EA Register Field
Number of Extension Words

EA = (PC) + d16
(d16,PC)
111
010
1

Chapter 2. Addressing Capabilities 2-7

Effective Addressing Modes
Figure 2-11. Program Counter Indirect with Scaled Index and 8-Bit Displacement

2.2.10 Absolute Short Addressing Mode

In this addressing mode, the operand is in memory, and the address of the operand is in the
extension word. The 16-bit address is sign-extended to 32 bits before it is used.

Figure 2-12. Absolute Short Addressing

Operand

Contents

Contents

Sign-Extended Value

Sign-Extension Integer +

+Scale Value X

31 0

31 0

31 0

31 0

7

Program Counter

Displacement

Index Register

Scale

Operand Pointer

Memory

Points to

Generation
Assembler Syntax
EA Mode Field
EA Register Field
Number of Extension Words

EA = (PC) + ((Xi) * ScaleFactor)) + Sign-extended d8
(d8,PC,Xi,Size*Scale)
111
011
1

Operand

Contents

Sign-Extension Integer

31 0

31 0

31 015

Extension Word

Operand Pointer

Memory

Points to

Generation
Assembler Syntax
EA Mode Field
EA Register Field
Number of Extension Words

EA Given
(xxx).W
111
000
1

2-8 ColdFire Family Programmer’s Reference Manual

Effective Addressing Modes
2.2.11 Absolute Long Addressing Mode

In this addressing mode, the operand is in memory, and the operand address occupies the
two extension words following the instruction word in memory. The first extension word
contains the high-order part of the address; the second contains the low-order part of the
address.

Figure 2-13. Absolute Long Addressing

2.2.12 Immediate Data

In this addressing mode, the operand is in 1 or 2 extension words. Table 2-2 lists the
location of the operand within the instruction word format. The immediate data format is
as follows:

Figure 2-14. Immediate Data Addressing

Table 2-2. Immediate Operand Location

Operation Length Location

Byte Low-order byte of the extension word

Word Entire extension word

Longword High-order word of the operand is in the first extension word; the
low-order word is in the second extension word.

Operand

Contents

Address Low

31 0

015

Second Extension Word

Operand Pointer

Memory

Points to

Generation
Assembler Syntax
EA Mode Field
EA Register Field
Number of Extension Words

EA Given
(xxx).L
111
001
2

Address High

015

First Extension Word

Generation
Assembler Syntax
EA Mode Field
EA Register Field
Number of Extension Words

Operand given
#<xxx>
111
100
1 or 2
Chapter 2. Addressing Capabilities 2-9

Stack
2.2.13 Effective Addressing Mode Summary

Effective addressing modes are grouped according to the mode use. Data-addressing modes
refer to data operands. Memory-addressing modes refer to memory operands. Alterable
addressing modes refer to alterable (writable) operands. Control-addressing modes refer to
memory operands without an associated size.

These categories sometimes combine to form new categories that are more restrictive. Two
combined classifications are alterable memory (addressing modes that are both alterable
and memory addresses) and data alterable (addressing modes that are both alterable and
data). Table 2-3 lists a summary of effective addressing modes and their categories.

2.3 Stack
Address register A7 stacks exception frames, subroutine calls and returns, temporary
variable storage, and parameter passing and is affected by instructions such as the LINK,
UNLK, RTE, and PEA. To maximize performance, A7 must be longword-aligned at all
times. Therefore, when modifying A7, be sure to do so in multiples of 4 to maintain
alignment. To further ensure alignment of A7 during exception handling, the ColdFire
architecture implements a self-aligning stack when processing exceptions.

Users can employ other address registers to implement other stacks using the address
register indirect with postincrement and predecrement addressing modes. With an address
register, users can implement a stack that fills either from high memory to low memory or
vice versa. Users should keep in mind these important directives:

Table 2-3. Effective Addressing Modes and Categories

Addressing Modes Syntax
Mode
Field

Reg.
Field

Data Memory Control Alterable

Register Direct
Data
Address

Dn
An

000
001

reg. no.
reg. no.

X
—

—
—

—
—

X
X

Register Indirect
Address
Address with Postincrement
Address with Predecrement
Address with Displacement

(An)
(An)+
–(An)

(d16,An)

010
011
100
101

reg. no.
reg. no.
reg. no.
reg. no.

X
X
X
X

X
X
X
X

X
—
—
X

X
X
X
X

Address Register Indirect with Scaled
Index and 8-Bit Displacement (d8,An,Xi*SF) 110 reg. no. X X X X

Program Counter Indirect with
Displacement (d16,PC) 111 010 X X X —

Program Counter Indirect with Scaled
Index and 8-Bit Displacement (d8,PC,Xi*SF) 111 011 X X X —

Absolute Data Addressing
Short
Long

(xxx).W
(xxx).L

111
111

000
001

X
X

X
X

X
X

—
—

Immediate #<xxx> 111 100 X X — —
2-10 ColdFire Family Programmer’s Reference Manual

Stack
• Use the predecrement mode to decrement the register before using its contents as the
pointer to the stack.

• Use the postincrement mode to increment the register after using its contents as the
pointer to the stack.

• Maintain the stack pointer correctly when byte, word, and longword items mix in
these stacks.

To implement stack growth from high memory to low memory, use –(An) to push data on
the stack and (An)+ to pull data from the stack. For this type of stack, after either a push or
a pull operation, the address register points to the top item on the stack.

Figure 2-15. Stack Growth from High Memory to Low Memory

To implement stack growth from low memory to high memory, use (An)+ to push data on
the stack and –(An) to pull data from the stack. After either a push or pull operation, the
address register points to the next available space on the stack.

Figure 2-16. Stack Growth from Low Memory to High Memory

BOTTOM OF STACK

LOW MEMORY
(FREE)

TOP OF STACK

HIGH MEMORY

An

BOTTOM OF STACK
LOW MEMORY

TOP OF STACK
(FREE)

HIGH MEMORY

An
Chapter 2. Addressing Capabilities 2-11

Stack
2-12 ColdFire Family Programmer’s Reference Manual

Chapter 3
Instruction Set Summary
This section briefly describes the ColdFire Family instruction set, using Motorola’s
assembly language syntax and notation. It includes instruction set details such as notation
and format.

3.1 Instruction Summary
Instructions form a set of tools that perform the following types of operations:

• Data movement

• Program control

• Integer arithmetic

• System control

• Logical operations

• Cache maintenance

• Shift operations

• Floating-point arithmetic

• Bit manipulation

The following paragraphs detail the instruction for each type of operation. Table 3-1 lists
the notations used throughout this manual. In the operand syntax statements of the
instruction definitions, the operand on the right is the destination operand.
Chapter 3. Instruction Set Summary 3-1

Instruction Summary
Table 3-1. Notational Conventions

Single- And Double Operand Operations

+ Arithmetic addition or postincrement indicator

– Arithmetic subtraction or predecrement indicator

* Arithmetic multiplication

/ Arithmetic division

~ Invert; operand is logically complemented.

& Logical AND

| Logical OR

^ Logical exclusive OR

→ Source operand is moved to destination operand.

←→ Two operands are exchanged.

<op> Any double-operand operation.

<operand>tested Operand is compared to zero, and the condition codes are set appropriately.

sign-extended All bits of the upper portion are made equal to the high-order bit of the lower portion.

Other Operations

If <condition>
then <operations>
else <operations>

Test the condition. If true, the operations after “then” are performed. If the condition is false and
the optional “else" clause is present, the operations after “else" are performed. If the condition is
false and else is omitted, the instruction performs no operation. Refer to the Bcc instruction
description as an example.

Register Specifications

An Any address register n (example: A3 is address register 3)

Ax, Ay Destination and source address registers, respectively

Dn Any data register n (example: D5 is data register 5)

Dx, Dy Destination and source data registers, respectively

Dw Data register containing a remainder

Rc Control register

Rn Any address or data register

Rx, Ry Any destination and source registers, respectively

Xi Index register, can be any address or data register; all 32-bits are used.

Subfields and Qualifiers

#<data> Immediate data following the instruction word(s).

() Identifies an indirect address in a register.

dn Displacement value, n bits wide (example: d16 is a 16-bit displacement).

sz Size of operation: Byte (B), Word (W), Longword (L)

lsb, msb Least significant bit, most significant bit

LSW, MSW Least significant word, most significant word

SF Scale factor for an index register
3-2 ColdFire Family Programmer’s Reference Manual

Instruction Summary
Register Names

CCR Condition Code Register (lower byte of status register)

PC Program Counter

SR Status Register

USP User Stack Pointer

ic, dc, bc Instruction, data, or both caches (unified cache uses bc)

Condition Codes

* General case

C Carry bit in CCR

cc Condition codes from CCR

N Negative bit in CCR

V Overflow bit in CCR

X Extend bit in CCR

Z Zero bit in CCR

— Not affected or applicable

Miscellaneous

<ea>x, <ea>y Destination and source effective address, respectively

<label> Assembly program label

#list List of registers, for example D3–D0

MAC Operations

ACC, ACCx MAC accumulator register, a specific EMAC accumulator register

ACCx, ACCy Destination and source accumulators, respectively

ACCext01 Four extension bytes associated with EMAC accumulators 0 and 1

ACCext23 Four extension bytes associated with EMAC accumulators 2 and 3

EV Extension overflow flag in MACSR

MACSR MAC status register

MASK MAC mask register

PAVx Product/accumulation overflow flags in MACSR

RxSF A register containing a MAC operand that is to be scaled

Rw Destination register for a MAC with load operation

Table 3-1. Notational Conventions (Continued)
Chapter 3. Instruction Set Summary 3-3

Instruction Summary
3.1.1 Data Movement Instructions

The MOVE and FMOVE instructions with their associated addressing modes are the basic
means of transferring and storing addresses and data. MOVE instructions transfer byte,
word, and longword operands from memory to memory, memory to register, register to
memory, and register to register. MOVEA instructions transfer word and longword
operands and ensure that only valid address manipulations are executed. In addition to the
general MOVE instructions, there are several special data movement instructions: MOV3Q,
MOVEM, MOVEQ, MVS, MVZ, LEA, PEA, LINK, and UNLK. MOV3Q, MVS, and
MVZ are ISA_B additions to the instruction set.

The FMOVE instructions move operands into, out of, and between floating-point data
registers. FMOVE also moves operands to and from the FPCR, FPIAR, and FPSR. For
operands moved into a floating-point data register, FSMOVE and FDMOVE explicitly
select single- and double-precision rounding of the result. FMOVEM moves any
combination of floating-point data registers. Table 3-2 lists the general format of these
integer and floating-point data movement instructions.

Floating-Point Operations

fmt Format of operation: Byte (B), Word (W), Longword (L), Single-precision (S),
Double-precision(D)

+inf Positive infinity

-inf Negative infinity

FPx, FPy Destination and source floating-point data registers, respectively

FPCR Floating-point control register

FPIAR Floating-point instruction address register

FPSR Floating-point status register

NAN Not-a-number

Table 3-1. Notational Conventions (Continued)
3-4 ColdFire Family Programmer’s Reference Manual

Instruction Summary
3.1.2 Integer Arithmetic Instructions

The integer arithmetic operations include 5 basic operations: ADD, SUB, MUL, DIV, and
REM. They also include CMP, CLR, and NEG. The instruction set includes ADD, CMP,
and SUB instructions for both address and data operations. The CLR instruction applies to
all sizes of data operands. Signed and unsigned MUL, DIV, and REM instructions include:

• word multiply to produce a longword product
• longword multiply to produce a longword product
• longword divided by a word with a word quotient and word remainder
• longword divided by a longword with a longword quotient
• longword divided by a longword with a longword remainder (REM)

Table 3-2. Data Movement Operation Format

Instruction Operand Syntax Operand Size Operation

FDMOVE FPy,FPx D Source → Destination; round destination to double

FMOVE <ea>y,FPx
FPy,<ea>x
FPy,FPx

FPcr,<ea>x
<ea>y,FPcr

B,W,L,S,D
B,W,L,S,D

D
L
L

Source → Destination

FPcr can be any floating-point control register: FPCR,
FPIAR, FPSR

FMOVEM #list,<ea>x
<ea>y,#list

D Listed registers → Destination
Source → Listed registers

FSMOVE <ea>y,FPx B,W,L,S,D Source → Destination; round destination to single

LEA <ea>y,Ax L <ea>y → Ax

LINK Ay,#<displacement> W SP – 4 → SP; Ay → (SP); SP → Ay, SP + dn → SP

MOV3Q1

1 Supported starting with V4

#<data>,<ea>x L Immediate Data → Destination

MOVCLR2

2 EMAC instruction

ACCy,Rx L Accumulator → Destination, 0 → Accumulator

MOVE3

MOVE from CCR
MOVE to CCR

3 Additional addressing modes supported starting with V4

<ea>y,<ea>x
MACcr,Dx

<ea>y,MACcr
CCR,Dx

<ea>y,CCR

B,W,L
L
L
W
W

Source → Destination
where MACcr can be any MAC control register:
ACCx, ACCext01, ACCext23, MACSR, MASK

MOVEA <ea>y,Ax W,L → L Source → Destination

MOVEM #list,<ea>x
<ea>y,#list

L Listed Registers → Destination
Source → Listed Registers

MOVEQ #<data>,Dx B → L Immediate Data → Destination

MVS1 <ea>y,Dx B,W Source with sign extension → Destination

MVZ1 <ea>y,Dx B,W Source with zero fill → Destination

PEA <ea>y L SP – 4 → SP; <ea>y → (SP)

UNLK Ax none Ax → SP; (SP) → Ax; SP + 4 → SP
Chapter 3. Instruction Set Summary 3-5

Instruction Summary
A set of extended instructions provides multiprecision and mixed-size arithmetic: ADDX,
SUBX, EXT, and NEGX. For devices with the optional MAC or EMAC unit, MAC and
MSAC instructions are available. Refer to Table 3-3 for a summary of the integer arithmetic
operations. In Table 3-3, X refers to the X-bit in the CCR.

Table 3-3. Integer Arithmetic Operation Format

Instruction Operand Syntax Operand Size Operation

ADD

ADDA

Dy,<ea>x
<ea>y,Dx
<ea>y,Ax

L
L
L

Source + Destination → Destination

ADDI
ADDQ

#<data>,Dx
#<data>,<ea>x

L
L

Immediate Data + Destination → Destination

ADDX Dy,Dx L Source + Destination + CCR[X] → Destination

CLR <ea>x B, W, L 0 → Destination

CMP
CMPA

<ea>y,Dx
<ea>y,Ax

B, W, L1

W, L2
Destination – Source → CCR

CMPI #<data>,Dx B, W, L1 Destination – Immediate Data → CCR

DIVS/DIVU3 <ea>y,Dx W, L Destination / Source → Destination
(Signed or Unsigned)

EXT

EXTB

Dx
Dx
Dx

B → W
W → L
B → L

Sign-Extended Destination → Destination

MAC Ry,RxSF,ACCx4

Ry,RxSF,<ea>y,Rw,ACCx4
W, L
W, L

ACCx + (Ry * Rx){<<|>>}SF → ACCx
ACCx + (Ry * Rx){<<|>>}SF → ACCx;
(<ea>y(&MASK)) → Rw

MSAC Ry,RxSF,ACCx4

Ry,RxSF,<ea>y,Rw,ACCx4
W, L
W, L

ACCx - (Ry * Rx){<<|>>}SF → ACCx
ACCx - (Ry * Rx){<<|>>}SF → ACCx;
(<ea>y(&MASK)) → Rw

MULS/MULU <ea>y,Dx W * W → L
L * L → L

Source * Destination → Destination
(Signed or Unsigned)

NEG Dx L 0 – Destination → Destination

NEGX Dx L 0 – Destination – CCR[X] → Destination

REMS/REMU3 <ea>y,Dw:Dx L Destination / Source → Remainder
(Signed or Unsigned)

SATS5 Dx L If CCR[V] == 1;
then if Dx[31] == 0;

then Dx[31:0] = 0x80000000;
else Dx[31:0] = 0x7FFFFFFF;

else Dx[31:0] is unchanged

SUB

SUBA

<ea>y,Dx
Dy,<ea>x
<ea>y,Ax

L
L
L

Destination - Source → Destination
3-6 ColdFire Family Programmer’s Reference Manual

Instruction Summary
3.1.3 Logical Instructions

The instructions AND, OR, EOR, and NOT perform logical operations with longword
integer data operands. A similar set of immediate instructions (ANDI, ORI, and EORI)
provides these logical operations with longword immediate data. Table 3-4 summarizes the
logical operations.

3.1.4 Shift Instructions

The ASR, ASL, LSR, and LSL instructions provide shift operations in both directions. All
shift operations can be performed only on registers.

Register shift operations shift longwords. The shift count can be specified in the instruction
operation word (to shift from 1 to 8 places) or in a register (modulo 64 shift count).

The SWAP instruction exchanges the 16-bit halves of a register. Table 3-5 is a summary of
the shift operations. In Table 3-5, C and X refer to the C-bit and X-bit in the CCR.

SUBI
SUBQ

#<data>,Dx
#<data>,<ea>x

L
L

Destination – Immediate Data → Destination

SUBX Dy,Dx L Destination – Source – CCR[X] → Destination

1 Byte and word supported starting with V4
2 Word supported starting with V4
3 Supported starting with the 5206e
4 The accumulator does not need to be specified on the original MAC unit
5 Supported starting with V4

Table 3-4. Logical Operation Format

Instruction Operand Syntax Operand Size Operation

AND <ea>y,Dx
Dy,<ea>x

L
L

Source & Destination → Destination

ANDI #<data>, Dx L Immediate Data & Destination → Destination

EOR Dy,<ea>x L Source ^ Destination → Destination

EORI #<data>,Dx L Immediate Data ^ Destination → Destination

NOT Dx L ~ Destination → Destination

OR <ea>y,Dx
Dy,<ea>x

L
L

Source | Destination → Destination

ORI #<data>,Dx L Immediate Data | Destination → Destination

Table 3-3. Integer Arithmetic Operation Format (Continued)
Chapter 3. Instruction Set Summary 3-7

Instruction Summary
3.1.5 Bit Manipulation Instructions

BTST, BSET, BCLR, and BCHG are bit manipulation instructions. All bit manipulation
operations can be performed on either registers or memory. The bit number is specified
either as immediate data or in the contents of a data register. Register operands are 32 bits
long, and memory operands are 8 bits long. Table 3-6 summarizes bit manipulation
operations.

3.1.6 Program Control Instructions

A set of subroutine call-and-return instructions and conditional and unconditional branch
instructions perform program control operations. Also included are test operand
instructions (TST and FTST), which set the integer or floating-point condition codes for use
by other program and system control instructions. NOP forces synchronization of the
internal pipelines. TPF is a no-operation instruction that does not force pipeline
synchronization. Table 3-7 summarizes these instructions.

Table 3-5. Shift Operation Format

Instruction
Operand
Syntax

Operand Size Operation

ASL Dy,Dx
#<data>,Dx

L
L

CCR[X,C] ← (Dx << Dy) ← 0
CCR[X,C] ← (Dx << #<data>) ← 0

ASR Dy,Dx
#<data>,Dx

L
L

msb → (Dx >> Dy) → CCR[X,C]
msb → (Dx >> #<data>) → CCR[X,C]

LSL Dy,Dx
#<data>,Dx

L
L

CCR[X,C] ← (Dx << Dy) ← 0
CCR[X,C] ← (Dx << #<data>) ← 0

LSR Dy,Dx
#<data>,Dx

L
L

0 → (Dx >> Dy) → CCR[X,C]
0 → (Dx >> #<data>) → CCR[X,C]

SWAP Dx W MSW of Dx ↔ LSW of Dx

Table 3-6. Bit Manipulation Operation Format

Instruction Operand Syntax Operand Size Operation

BCHG Dy,<ea>x
#<data>,<ea>x

B, L
B, L

~ (<bit number> of Destination) → CCR[Z]
→ <bit number> of Destination

BCLR Dy,<ea>x
#<data>,<ea>x

B, L
B, L

~ (<bit number> of Destination) → CCR[Z];
0 →<bit number> of Destination

BSET Dy,<ea>x
#<data>,<ea>x

B, L
B, L

~ (<bit number> of Destination) → CCR[Z];
1 → <bit number> of Destination

BTST Dy,<ea>x
#<data>,<ea>x

B, L
B, L

~ (<bit number> of Destination) → CCR[Z]
3-8 ColdFire Family Programmer’s Reference Manual

Instruction Summary
Letters cc in the integer instruction mnemonics Bcc and Scc specify testing one of the
following conditions:

For the definition of cc for FBcc, refer to Section 7.2, “Conditional Testing.”

Table 3-7. Program Control Operation Format

Instruction Operand Syntax Operand Size Operation

Conditional

Bcc <label> B, W, L1

1 Longword supported starting with V4

If Condition True, Then PC + dn → PC

FBcc <label> W, L If Condition True, Then PC + dn → PC

Scc Dx B If Condition True, Then 1s → Destination;
Else 0s → Destination

Unconditional

BRA <label> B, W, L1 PC + dn → PC

BSR <label> B, W, L1 SP – 4 → SP; nextPC → (SP); PC + dn → PC

FNOP none none PC + 2 → PC (FPU pipeline synchronized)

JMP <ea>y none Source Address → PC

JSR <ea>y none SP – 4 → SP; nextPC → (SP); Source → PC

NOP none none PC + 2 → PC (Integer pipeline synchronized)

TPF none
#<data>
#<data>

none
W
L

PC + 2→ PC
PC + 4 → PC
PC + 6→ PC
(Pipeline not synchronized)

Returns

RTS none none (SP) → PC; SP + 4 → SP

Test Operand

TAS2

2 Supported starting with V4

<ea>x B Destination Tested → CCR;
1 → bit 7 of Destination

FTST <ea>y B, W, L, S, D Source Operand Tested → FPCC

TST <ea>y B, W, L Source Operand Tested → CCR

CC—Carry clear GE—Greater than or equal
LS—Lower or same PL—Plus
CS—Carry set GT—Greater than
LT—Less than T—Always true1

1 Not applicable to the Bcc instructions.

EQ—Equal HI—Higher
MI—Minus VC—Overflow clear
F—Never true 1 LE—Less than or equal
NE—Not equal VS—Overflow set
Chapter 3. Instruction Set Summary 3-9

Instruction Summary
3.1.7 System Control Instructions

This type of instruction includes privileged and trapping instructions as well as instructions
that use or modify the CCR. FSAVE and FRESTORE save and restore the nonuser visible
portion of the FPU during context switches. Table 3-8 summarizes these instructions.

3.1.8 Cache Maintenance Instructions

The cache instructions provide maintenance functions for managing the caches. CPUSHL
is used to push a specific cache line, and possibly invalidate it. INTOUCH can be used to
load specific data into the cache. Both of these instructions are privileged instructions.
Table 3-9 summarizes these instructions.

Table 3-8. System Control Operation Format

Instruction
Operand
Syntax

Operand Size Operation

Privileged

FRESTORE <ea>y none FPU State Frame → Internal FPU State

FSAVE <ea>x none Internal FPU State → FPU State Frame

HALT none none Halt processor core (synchronizes pipeline)

MOVE from SR SR,Dx W SR → Destination

MOVE from USP1

1 Supported starting with V4 on devices containing an MMU.

USP,Dx L USP → Destination

MOVE to SR <ea>y,SR W Source → SR; Dy or #<data> source only (synchronizes
pipeline)

MOVE to USP1 Ay,USP L Source → USP

MOVEC Ry,Rc L Ry → Rc (synchronizes pipeline)

RTE none none 2 (SP) → SR; 4 (SP) → PC; SP + 8 →SP
Adjust stack according to format (synchronizes pipeline)

STOP #<data> none Immediate Data → SR; STOP (synchronizes pipeline)

WDEBUG <ea>y L Addressed Debug WDMREG Command Executed
(synchronizes pipeline)

Debug Functions

PULSE none none Set PST = 0x4

WDDATA <ea>y B, W, L Source → DDATA port

Trap Generating

ILLEGAL none none SP – 4 → SP; PC → (SP) → PC; SP – 2 → SP;
SR → (SP); SP – 2 → SP; Vector Offset → (SP);
(VBR + 0x10) → PC

TRAP #<vector> none 1 → S Bit of SR; SP – 4 → SP; nextPC → (SP);
SP – 2 → SP; SR → (SP)
SP – 2 → SP; Format/Offset → (SP)
(VBR + 0x80 +4*n) → PC, where n is the TRAP number
3-10 ColdFire Family Programmer’s Reference Manual

Instruction Summary
3.1.9 Floating-Point Arithmetic Instructions

The floating-point instructions are organized into two categories: dyadic (requiring two
operands) and monadic (requiring one operand). The dyadic floating-point instructions
provide several arithmetic functions such as FADD and FSUB. For these operations, the
first operand can be located in memory, an integer data register, or a floating-point data
register. The second operand is always located in a floating-point data register. The results
of the operation are stored in the register specified as the second operand. All FPU
arithmetic operations support all data formats. Results are rounded to either single- or
double-precision format. Table 3-10 gives the general format for these dyadic instructions.
Table 3-11 lists the available operations.

The monadic floating-point instructions provide several arithmetic functions requiring one
input operand such as FABS. Unlike the integer counterparts to these functions (e.g., NEG),
a source and a destination can be specified. The operation is performed on the source
operand and the result is stored in the destination, which is always a floating-point data
register. All data formats are supported. Table 3-12 gives the general format for these
monadic instructions. Table 3-13 lists the available operations.

Table 3-9. Cache Maintenance Operation Format

Instruction
Operand
Syntax

Operand Size Operation

CPUSHL ic,(Ax)
dc,(Ax)
bc,(Ax)

none If data is valid and modified, push cache line; invalidate
line if programmed in CACR (synchronizes pipeline)

INTOUCH1

1 Supported starting with V4

Ay none Instruction fetch touch at (Ay) (synchronizes pipeline)

Table 3-10. Dyadic Floating-Point Operation Format

Instruction
Operand
Syntax

Operand Size Operation

F<dop> <ea>y,FPx
FPy,FPx

B, W, L, S, D FPx <Function> Source → FPx

Table 3-11. Dyadic Floating-Point Operations

Instruction (F<dop>) Operation

FADD, FSADD, FDADD Add

FCMP Compare

FDIV, FSDIV, FDDIV Divide

FMUL, FSMUL, FDMUL Multiply

FSUB, FSSUB, FDSUB Subtract
Chapter 3. Instruction Set Summary 3-11

Instruction Set Additions
3.2 Instruction Set Additions
This section contains tables which summarize the baseline instruction set as well as the
instructions that are added through ISA_B and the optional MAC, EMAC, and
Floating-Point Units.

Table 3-14 shows the entire user instruction set in alphabetical order. Table 3-15 shows the
entire supervisor instruction set in alphabetical order. In these tables, the ISA column has
the following definitions:

• ISA_A: Part of the original ColdFire instruction set architecture

• ISA_B: Added with V4. ISA_B also contains all ISA_A instructions.

• MAC: Part of the original ColdFire MAC instruction set

• EMAC: Additional MAC instructions included in the EMAC

• FPU: Floating-Point Unit instructions

Table 3-12. Monadic Floating-Point Operation Format

Instruction
Operand
Syntax

Operand Size Operation

F<mop> <ea>y,FPx
FPy,FPx

FPx

B, W, L, S, D Source → <Function> → FPx

FPx → <Function> → FPx

Table 3-13. Monadic Floating-Point Operations

Instruction (F<mop>) Operation

FABS, FSABS, FDABS Absolute Value

FINT Extract Integer Part

FINTRZ Extract Integer Part, Rounded to Zero

FNEG, FSNEG, FDNEG Negate

FSQRT, FSSQRT, FDSQRT Square Root

Table 3-14. ColdFire User Instruction Set Summary

Instruction Operand Syntax
Operand

Size Operation ISA

ADD

ADDA

Dy,<ea>x
<ea>y,Dx
<ea>y,Ax

L
L
L

Source + Destination → Destination ISA_A

ADDI
ADDQ

#<data>,Dx
#<data>,<ea>x

L
L

Immediate Data + Destination → Destination ISA_A

ADDX Dy,Dx L Source + Destination + CCR[X] → Destination ISA_A

AND <ea>y,Dx
Dy,<ea>x

L
L

Source & Destination → Destination ISA_A

ANDI #<data>, Dx L Immediate Data & Destination → Destination ISA_A
3-12 ColdFire Family Programmer’s Reference Manual

Instruction Set Additions
ASL Dy,Dx
#<data>,Dx

L
L

CCR[X,C] ← (Dx << Dy) ← 0
CCR[X,C] ← (Dx << #<data>) ← 0

ISA_A

ASR Dy,Dx
#<data>,Dx

L
L

msb → (Dx >> Dy) → CCR[X,C]
msb → (Dx >> #<data>) → CCR[X,C

ISA_A

Bcc <label> B, W, L1 If Condition True, Then PC + dn → PC ISA_A

BCHG Dy,<ea>x
#<data>,<ea>x

B, L
B, L

~ (<bit number> of Destination) → CCR[Z] →
<bit number> of Destination

ISA_A

BCLR Dy,<ea>x
#<data>,<ea>x

B, L
B, L

~ (<bit number> of Destination) → CCR[Z];
0 →<bit number> of Destination

ISA_A

BRA <label> B, W, L1 PC + dn → PC ISA_A

BSET Dy,<ea>x
#<data>,<ea>x

B, L
B, L

~ (<bit number> of Destination) → CCR[Z];
1 → <bit number> of Destination

ISA_A

BSR <label> B, W, L1 SP – 4 → SP; nextPC → (SP); PC + dn → PC ISA_A

BTST Dy,<ea>x
#<data>,<ea>x

B, L
B, L

~ (<bit number> of Destination) → CCR[Z] ISA_A

CLR <ea>x B, W, L 0 → Destination ISA_A

CMP
CMPA

<ea>y,Dx
<ea>y,Ax

B, W, L2

W, L3
Destination – Source → CCR ISA_A

CMPI #<data>,Dx B, W, L1 Destination – Immediate Data → CCR ISA_A

DIVS/DIVU4 <ea>y,Dx W, L Destination / Source → Destination
(Signed or Unsigned)

ISA_A

EOR Dy,<ea>x L Source ^ Destination → Destination ISA_A

EORI #<data>,Dx L Immediate Data ^ Destination → Destination ISA_A

EXT

EXTB

Dx
Dx
Dx

B → W
W → L
B → L

Sign-Extended Destination → Destination ISA_A

FABS <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

Absolute Value of Source → FPx

Absolute Value of FPx → FPx

FPU

FADD <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

Source + FPx → FPx FPU

FBcc <label> W, L If Condition True, Then PC + dn → PC FPU

FCMP <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

FPx - Source FPU

FDABS <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

Absolute Value of Source → FPx; round
destination to double
Absolute Value of FPx → FPx; round destination
to double

FPU

FDADD <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

Source + FPx → FPx; round destination to double FPU

FDDIV <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

FPx / Source → FPx; round destination to double FPU

Table 3-14. ColdFire User Instruction Set Summary (Continued)

Instruction Operand Syntax
Operand

Size Operation ISA
Chapter 3. Instruction Set Summary 3-13

Instruction Set Additions
FDIV <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

FPx / Source → FPx FPU

FDMOVE FPy,FPx D Source → Destination; round destination to double FPU

FDMUL <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

Source * FPx → FPx; round destination to double FPU

FDNEG <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

- (Source) → FPx; round destination to double

- (FPx) → FPx; round destination to double

FPU

FDSQRT <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

Square Root of Source → FPx; round destination
to double
Square Root of FPx → FPx; round destination to
double

FPU

FDSUB <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

FPx - Source → FPx; round destination to double FPU

FINT <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

Integer Part of Source → FPx

Integer Part of FPx → FPx

FPU

FINTRZ <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

Integer Part of Source → FPx; round to zero

Integer Part of FPx → FPx; round to zero

FPU

FMOVE <ea>y,FPx
FPy,<ea>x
FPy,FPx

FPcr,<ea>x
<ea>y,FPcr

B,W,L,S,D
B,W,L,S,D

D
L
L

Source → Destination

FPcr can be any floating-point control register:
FPCR, FPIAR, FPSR

FPU

FMOVEM #list,<ea>x
<ea>y,#list

D Listed registers → Destination
Source → Listed registers

FPU

FMUL <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

Source * FPx → FPx FPU

FNEG <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

- (Source) → FPx

- (FPx) → FPx

FPU

FNOP none none PC + 2 → PC (FPU Pipeline Synchronized) FPU

FSABS <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

Absolute Value of Source → FPx; round
destination to single
Absolute Value of FPx → FPx; round destination
to single

FPU

FSADD <ea>y,FPx
FPy,FPx

B,W,L,S,D Source + FPx → FPx; round destination to single FPU

FSDIV <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

FPx / Source → FPx; round destination to single FPU

FSMOVE <ea>y,FPx B,W,L,S,D Source → Destination; round destination to single FPU

FSMUL <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

Source * FPx → FPx; round destination to single FPU

Table 3-14. ColdFire User Instruction Set Summary (Continued)

Instruction Operand Syntax
Operand

Size Operation ISA
3-14 ColdFire Family Programmer’s Reference Manual

Instruction Set Additions
FSNEG <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

- (Source) → FPx; round destination to single

- (FPx) → FPx; round destination to single

FPU

FSQRT <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

Square Root of Source → FPx

Square Root of FPx → FPx

FPU

FSSQRT <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

Square Root of Source → FPx; round destination
to single
Square Root of FPx → FPx; round destination to
single

FPU

FSSUB <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

FPx - Source → FPx; round destination to single FPU

FSUB <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

FPx - Source → FPx FPU

FTST <ea>y B, W, L, S, D Source Operand Tested → FPCC FPU

ILLEGAL none none SP – 4 → SP; PC → (SP) → PC; SP – 2 → SP;
SR → (SP); SP – 2 → SP; Vector Offset → (SP);
(VBR + 0x10) → PC

ISA_A

JMP <ea>y none Source Address → PC ISA_A

JSR <ea>y none SP – 4 → SP; nextPC → (SP); Source → PC ISA_A

LEA <ea>y,Ax L <ea>y → Ax ISA_A

LINK Ay,#<displacement> W SP – 4 → SP; Ay → (SP); SP → Ay, SP + dn → SP ISA_A

LSL Dy,Dx
#<data>,Dx

L
L

CCR[X,C] ← (Dx << Dy) ← 0
CCR[X,C] ← (Dx << #<data>) ← 0

ISA_A

LSR Dy,Dx
#<data>,Dx

L
L

0 → (Dx >> Dy) → CCR[X,C]
0 → (Dx >> #<data>) → CCR[X,C]

ISA_A

MAC Ry,RxSF,ACCx
Ry,RxSF,<ea>y,Rw,

ACCx

W, L
W, L

ACCx + (Ry * Rx){<<|>>}SF → ACCx
ACCx + (Ry * Rx){<<|>>}SF → ACCx;
(<ea>y(&MASK)) → Rw

MAC

MOV3Q #<data>,<ea>x L Immediate Data → Destination ISA_B

MOVCLR ACCy,Rx L Accumulator → Destination, 0 → Accumulator EMAC

MOVE

MOVE from CCR
MOVE to CCR

<ea>y,<ea>x
MACcr,Dx

<ea>y,MACcr
CCR,Dx

<ea>y,CCR

B,W,L
L
L
W
W

Source → Destination
where MACcr can be any MAC control register:
ACCx, ACCext01, ACCext23, MACSR, MASK

ISA_A
MAC
MAC

ISA_A
ISA_A

MOVEA <ea>y,Ax W,L → L Source → Destination ISA_A

MOVEM #list,<ea>x
<ea>y,#list

L Listed Registers → Destination
Source → Listed Registers

ISA_A

MOVEQ #<data>,Dx B → L Immediate Data → Destination ISA_A

MSAC Ry,RxSF,ACCx
Ry,RxSF,<ea>y,Rw,

ACCx

W, L
W, L

ACCx - (Ry * Rx){<<|>>}SF → ACCx
ACCx - (Ry * Rx){<<|>>}SF → ACCx;
(<ea>y(&MASK)) → Rw

MAC

Table 3-14. ColdFire User Instruction Set Summary (Continued)

Instruction Operand Syntax
Operand

Size Operation ISA
Chapter 3. Instruction Set Summary 3-15

Instruction Set Additions
MULS/MULU <ea>y,Dx W * W → L
L * L → L

Source * Destination → Destination
(Signed or Unsigned)

ISA_A

MVS <ea>y,Dx B,W Source with sign extension → Destination ISA_B

MVZ <ea>y,Dx B,W Source with zero fill → Destination ISA_B

NEG Dx L 0 – Destination → Destination ISA_A

NEGX Dx L 0 – Destination – CCR[X] → Destination ISA_A

NOP none none PC + 2 → PC (Integer Pipeline Synchronized) ISA_A

NOT Dx L ~ Destination → Destination ISA_A

OR <ea>y,Dx
Dy,<ea>x

L
L

Source | Destination → Destination ISA_A

ORI #<data>,Dx L Immediate Data | Destination → Destination ISA_A

PEA <ea>y L SP – 4 → SP; <ea>y → (SP) ISA_A

PULSE none none Set PST = 0x4 ISA_A

REMS/REMU4 <ea>y,Dw:Dx L Destination / Source → Remainder
(Signed or Unsigned)

ISA_A

RTS none none (SP) → PC; SP + 4 → SP ISA_A

SATS Dx L If CCR[V] == 1;
then if Dx[31] == 0;

then Dx[31:0] = 0x80000000;
else Dx[31:0] = 0x7FFFFFFF;

else Dx[31:0] is unchanged

ISA_B

Scc Dx B If Condition True, Then 1s → Destination;
Else 0s → Destination

ISA_A

SUB

SUBA

<ea>y,Dx
Dy,<ea>x
<ea>y,Ax

L
L
L

Destination - Source → Destination ISA_A

SUBI
SUBQ

#<data>,Dx
#<data>,<ea>x

L
L

Destination – Immediate Data → Destination ISA_A

SUBX Dy,Dx L Destination – Source – CCR[X] → Destination ISA_A

SWAP Dx W MSW of Dx ↔ LSW of Dx ISA_A

TAS <ea>x B Destination Tested → CCR;
1 → bit 7 of Destination

ISA_B

TPF none
#<data>
#<data>

none
W
L

PC + 2→ PC
PC + 4 → PC
PC + 6→ PC

ISA_A

TRAP #<vector> none 1 → S Bit of SR; SP – 4 → SP; nextPC → (SP);
SP – 2 → SP; SR → (SP)
SP – 2 → SP; Format/Offset → (SP)
(VBR + 0x80 +4*n) → PC, where n is the TRAP
number

ISA_A

TST <ea>y B, W, L Source Operand Tested → CCR ISA_A

Table 3-14. ColdFire User Instruction Set Summary (Continued)

Instruction Operand Syntax
Operand

Size Operation ISA
3-16 ColdFire Family Programmer’s Reference Manual

Instruction Set Additions
UNLK Ax none Ax → SP; (SP) → Ax; SP + 4 → SP ISA_A

WDDATA <ea>y B, W, L Source → DDATA port ISA_A

1 Longword supported starting with V4
2 Byte and word supported starting with V4
3 Word supported starting with V4
4 Supported starting with the 5206e

Table 3-15. ColdFire Supervisor Instruction Set Summary

Instruction Operand Syntax
Operand

Size Operation ISA

CPUSHL ic,(Ax)
dc,(Ax)
bc,(Ax)

none If data is valid and modified, push cache line;
invalidate line if programmed in CACR
(synchronizes pipeline)

ISA_A

FRESTORE <ea>y none FPU State Frame → Internal FPU State FPU

FSAVE <ea>x none Internal FPU State → FPU State Frame FPU

HALT none none Halt processor core ISA_A

INTOUCH Ay none Instruction fetch touch at (Ay) ISA_B

MOVE from SR SR,Dx W SR → Destination ISA_A

MOVE from
USP1

1 Supported starting with V4 on devices containing an MMU.

USP,Dx L USP → Destination ISA_B

MOVE to SR <ea>y,SR W Source → SR; Dy or #<data> source only ISA_A

MOVE to USP1 Ay,USP L Source → USP ISA_B

MOVEC Ry,Rc L Ry → Rc ISA_A

RTE none none 2 (SP) → SR; 4 (SP) → PC; SP + 8 →SP
Adjust stack according to format

ISA_A

STOP #<data> none Immediate Data → SR; STOP ISA_A

WDEBUG <ea>y L Addressed Debug WDMREG Command Executed ISA_A

Table 3-14. ColdFire User Instruction Set Summary (Continued)

Instruction Operand Syntax
Operand

Size Operation ISA
Chapter 3. Instruction Set Summary 3-17

Instruction Set Additions
Table 3-16 summarizes the additional instructions for the ISA_B instruction set.

Table 3-16. ColdFire ISA_B Additions Summary

Instruction Operand Syntax
Operand

Size Operation
Super/
User

Bcc <label> B, W, L1

1 Longword supported starting with V4

If Condition True, Then PC + dn → PC User

BRA <label> B, W, L1 PC + dn → PC User

BSR <label> B, W, L1 SP – 4 → SP; PC → (SP); PC + dn → PC User

CMP
CMPA

<ea>y,Dx
<ea>y,Ax

B, W, L2

W, L3

2 Byte and word supported starting with V4
3 Word supported starting with V4

Destination – Source → cc User

CMPI #<data>,Dx B, W, L1 Destination – Immediate Data → cc User

CPUSHL ic,(Ax)
dc,(Ax)
bc,(Ax)

none If data is valid and modified, push cache line;
invalidate line if programmed in CACR

Super

INTOUCH Ax none Instruction fetch touch at (Ax) Super

MOV3Q #<data>,<ea>x L Immediate Data → Destination User

MOVE4

4 Additional addressing modes supported starting with V4

<ea>y,<ea>x B,W,L Source → Destination User

MOVE from
USP5

5 Supported starting with V4 on devices containing an MMU.

USP,Dx L USP → Destination Super

MOVE to USP5 Ay,USP L Source → USP Super

MOVEA <ea>y,Ax W,L → L Source → Destination User

MVS <ea>y,Dx B,W Source with sign extension → Destination User

MVZ <ea>y,Dx B,W Source with zero fill → Destination User

SATS Dx L If CCR[V] == 1;
then if Dx[31] == 0;

then Dx[31:0] = 0x80000000;
else Dx[31:0] = 0x7FFFFFFF;

else Dx[31:0] is unchanged

User

TAS <ea>x B Destination Tested → Condition Codes;
1 → bit 7 of Destination

User
3-18 ColdFire Family Programmer’s Reference Manual

Instruction Set Additions
Table 3-17 summarizes the instruction set supported by the original MAC unit.

Table 3-18 summarizes the changes to the instruction set due to the enhancements in the
EMAC unit.

Table 3-17. MAC Instruction Set Summary

Instruction Operand Syntax
Operand

Size Operation
Super/
User

MAC Ry,RxSF,ACC
Ry,RxSF,<ea>y,Rw,

ACC

W, L
W, L

ACC + (Ry * Rx){<<|>>}SF → ACC
ACC + (Ry * Rx){<<|>>}SF → ACC;
(<ea>y(&MASK)) → Rw

User

MOVE MACcr,Dx
<ea>y,MACcr

L
L

Source → Destination
where MACcr can be any MAC control register:
ACC, MACSR, MASK

User

MSAC Ry,RxSF,ACC
Ry,RxSF,<ea>y,Rw,

ACC

W, L
W, L

ACC - (Ry * Rx){<<|>>}SF → ACC
ACC - (Ry * Rx){<<|>>}SF → ACC;
(<ea>y(&MASK)) → Rw

User

Table 3-18. EMAC Instruction Set Enhancements Summary

Instruction Operand Syntax
Operand

Size Operation
Super/
User

MAC1

1 The EMAC has 4 accumulators

Ry,RxSF,ACCx
Ry,RxSF,<ea>y,Rw,

ACCx

W, L
W, L

ACCx + (Ry * Rx){<<|>>}SF → ACCx
ACCx + (Ry * Rx){<<|>>}SF → ACCx;
(<ea>y(&MASK)) → Rw

User

MOVCLR ACCy,Rx L Accumulator → Destination, 0 → Accumulator User

MOVE MACcr,Dx
<ea>y,MACcr

L
L

Source → Destination
where MACcr can be any MAC control register:
ACCx, ACCext01, ACCext23, MACSR, MASK

User

MSAC Ry,RxSF,ACCx
Ry,RxSF,<ea>y,Rw,

ACCx

W, L
W, L

ACCx - (Ry * Rx){<<|>>}SF → ACCx
ACCx - (Ry * Rx){<<|>>}SF → ACCx;
(<ea>y(&MASK)) → Rw

User
Chapter 3. Instruction Set Summary 3-19

Instruction Set Additions
Table 3-19 summarizes the instruction set supported by the floating-point unit.

Table 3-19. Floating-Point Instruction Set Summary

Instruction Operand Syntax
Operand

Size Operation
Super/
User

FABS <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

Absolute Value of Source → FPx

Absolute Value of FPx → FPx

User

FADD <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

Source + FPx → FPx User

FBcc <label> W, L If Condition True, Then PC + dn → PC User

FCMP <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

FPx - Source User

FDABS <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

Absolute Value of Source → FPx; round
destination to double
Absolute Value of FPx → FPx; round destination
to double

User

FDADD <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

Source + FPx → FPx; round destination to double User

FDDIV <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

FPx / Source → FPx; round destination to double User

FDIV <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

FPx / Source → FPx User

FDMOVE FPy,FPx D Source → Destination; round destination to double User

FDMUL <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

Source * FPx → FPx; round destination to double User

FDNEG <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

- (Source) → FPx; round destination to double

- (FPx) → FPx; round destination to double

User

FDSQRT <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

Square Root of Source → FPx; round destination
to double
Square Root of FPx → FPx; round destination to
double

User

FDSUB <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

FPx - Source → FPx; round destination to double User

FINT <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

Integer Part of Source → FPx

Integer Part of FPx → FPx

User

FINTRZ <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

Integer Part of Source → FPx; round to zero

Integer Part of FPx → FPx; round to zero

User

FMOVE <ea>y,FPx
FPy,<ea>x
FPy,FPx

FPcr,<ea>x
<ea>y,FPcr

B,W,L,S,D
B,W,L,S,D

D
L
L

Source → Destination

FPcr can be any floating-point control register:
FPCR, FPIAR, FPSR

User

FMOVEM #list,<ea>x
<ea>y,#list

D Listed registers → Destination
Source → Listed registers

User
3-20 ColdFire Family Programmer’s Reference Manual

Instruction Set Additions
FMUL <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

Source * FPx → FPx User

FNEG <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

- (Source) → FPx

- (FPx) → FPx

User

FNOP none none PC + 2 → PC (FPU Pipeline Synchronized) User

FRESTORE <ea>y none FPU State Frame → Internal FPU State Super

FSABS <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

Absolute Value of Source → FPx; round
destination to single
Absolute Value of FPx → FPx; round destination
to single

User

FSADD <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

Source + FPx → FPx; round destination to single User

FSAVE <ea>x none Internal FPU State → FPU State Frame Super

FSDIV <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

FPx / Source → FPx; round destination to single User

FSMOVE <ea>y,FPx B,W,L,S,D Source → Destination; round destination to single User

FSMUL <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

Source * FPx → FPx; round destination to single User

FSNEG <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

- (Source) → FPx; round destination to single

- (FPx) → FPx; round destination to single

User

FSQRT <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

Square Root of Source → FPx

Square Root of FPx → FPx

User

FSSQRT <ea>y,FPx
FPy,FPx

FPx

B,W,L,S,D
D
D

Square Root of Source → FPx; round destination
to single
Square Root of FPx → FPx; round destination to
single

User

FSSUB <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

FPx - Source → FPx; round destination to single User

FSUB <ea>y,FPx
FPy,FPx

B,W,L,S,D
D

FPx - Source → FPx User

FTST <ea>y B, W, L, S, D Source Operand Tested → FPCC User

Table 3-19. Floating-Point Instruction Set Summary

Instruction Operand Syntax
Operand

Size Operation
Super/
User
Chapter 3. Instruction Set Summary 3-21

Instruction Set Additions
3-22 ColdFire Family Programmer’s Reference Manual

Chapter 4
Integer User Instructions
This section describes the integer user instructions for the ColdFire Family. A detailed
discussion of each instruction description is arranged in alphabetical order by instruction
mnemonic.

Not all instructions are supported by all ColdFire processors. DIVS/U and REMS/U are
supported starting with the 5206e. The original ColdFire Instruction Set Architecture,
ISA_A, is supported by V2 and V3 cores. The V4 core supports ISA_B, which encompasses
all of ISA_A, extends the functionality of some ISA_A instructions, and adds several new
instructions. These extensions can be identified by a table which appears at the end of each
instruction description where there are ISA_B differences.
Chapter 4. Integer User Instructions 4-1

ADD Add ADD
(All ColdFire Processors)

Operation: Source + Destination → Destination

Assembler Syntax: ADD.L <ea>y,Dx
ADD.L Dy,<ea>x

Attributes: Size = longword

Description: Adds the source operand to the destination operand using binary addition and
stores the result in the destination location. The size of the operation may only be specified
as a longword. The mode of the instruction indicates which operand is the source and which
is the destination as well as the operand size.

The Dx mode is used when the destination is a data register; the destination <ea>x mode is
invalid for a data register.

In addition, ADDA is used when the destination is an address register. ADDI and ADDQ
are used when the source is immediate data.

Instruction Fields:

• Register field—Specifies the data register.

• Opmode field:

Condition
Codes:

X N Z V C X Set the same as the carry bit
N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if an overflow is generated; cleared otherwise
C Set if an carry is generated; cleared otherwise

∗ ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 Register Opmode Effective Address

Mode Register

Byte Word Longword Operation

— — 010 <ea>y + Dx → Dx

— — 110 Dy + <ea>x → <ea>x
4-2 ColdFire Family Programmer’s Reference Manual

ADD Add ADD

Instruction Fields (continued):

• Effective Address field—Determines addressing mode

— For the source operand <ea>y, use addressing modes listed in the following
table:

— For the destination operand <ea>x, use addressing modes listed in the following
table:

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W 111 000

Ay 001 reg. number:Ay (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> 111 100

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) 111 011

Addressing Mode Mode Register Addressing Mode Mode Register

Dx — — (xxx).W 111 000

Ax — — (xxx).L 111 001

(Ax) 010 reg. number:Ax #<data> — —

(Ax) + 011 reg. number:Ax

– (Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) 110 reg. number:Ax (d8,PC,Xi) — —
Chapter 4. Integer User Instructions 4-3

ADDA Add Address ADDA
(All ColdFire Processors)

Operation: Source + Destination → Destination

Assembler Syntax: ADDA.L <ea>y,Ax

Attributes: Size = longword

Description: Operates similarly to ADD, but is used when the destination register is an
address register rather than a data register. Adds the source operand to the destination
address register and stores the result in the address register. The size of the operation is
specified as a longword.

Condition Codes: Not affected

Instruction Fields:

• Destination Register field—Specifies the destination register, Ax.

• Source Effective Address field— Specifies the source operand; use addressing
modes listed in the following table:

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 Destination
Register, Ax

1 1 1 Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W 111 000

Ay 001 reg. number:Ay (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> 111 100

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) 111 011
4-4 ColdFire Family Programmer’s Reference Manual

ADDI Add Immediate ADDI
(All ColdFire Processors)

Operation: Immediate Data + Destination → Destination

Assembler Syntax: ADDI.L #<data>,Dx

Attributes: Size = longword

Description: Operates similarly to ADD, but is used when the source operand is immediate
data. Adds the immediate data to the destination operand and stores the result in the
destination data register, Dx. The size of the operation is specified as longword. The size of
the immediate data is specified as a longword. Note that the immediate data is contained in
the two extension words, with the first extension word, bits [15:0], containing the upper
word, and the second extension word, bits [15:0], containing the lower word.

Instruction Fields:

• Destination Register field - Specifies the destination data register, Dx.

Condition
Codes:

X N Z V C X Set the same as the carry bit
N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if an overflow is generated; cleared otherwise
C Set if an carry is generated; cleared otherwise

∗ ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 0 1 0 0 0 0 Register, Dx

Upper Word of Immediate Data

Lower Word of Immediate Data
Chapter 4. Integer User Instructions 4-5

ADDQ Add Quick ADDQ
(All ColdFire Processors)

Operation: Immediate Data + Destination → Destination

Assembler Syntax: ADDQ.L #<data>,<ea>x

Attributes: Size = longword

Description: Operates similarly to ADD, but is used when the source operand is immediate
data ranging in value from 1 to 8. Adds the immediate value to the operand at the destination
location. The size of the operation is specified as longword. The immediate data is
zero-filled to a longword before being added to the destination. When adding to address
registers, the condition codes are not altered.

Instruction Fields:

• Data field—3 bits of immediate data representing 8 values (0 – 7), with 1-7
representing values of 1-7 respectively and 0 representing a value of 8.

• Destination Effective Address field—Specifies the destination location, <ea>x; use
only those alterable addressing modes listed in the following table:

Condition
Codes:

X N Z V C X Set the same as the carry bit
N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if an overflow is generated; cleared otherwise
C Set if an carry is generated; cleared otherwise

∗ ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 Data 0 1 0 Destination Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dx 000 reg. number:Dx (xxx).W 111 000

Ax 001 reg. number:Ax (xxx).L 111 001

(Ax) 010 reg. number:Ax #<data> — —

(Ax) + 011 reg. number:Ax

– (Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) 110 reg. number:Ax (d8,PC,Xi) — —
4-6 ColdFire Family Programmer’s Reference Manual

ADDX Add Extended ADDX
(All ColdFire Processors)

Operation: Source + Destination + CCR[X] → Destination

Assembler Syntax: ADDX.L Dy,Dx

Attributes: Size = longword

Description: Adds the source operand and CCR[X] to the destination operand and stores
the result in the destination location. The size of the operation is specified as a longword.

Normally CCR[Z] is set explicitly via programming before the start of an ADDX operation
to allow successful testing for zero results upon completion of multiple-precision
operations.

Instruction Fields:

• Register Dx field—Specifies the destination data register, Dx.

• Register Dy field—Specifies the source data register, Dy.

Condition
Codes:

X N Z V C X Set the same as the carry bit
N Set if the result is negative; cleared otherwise
Z Cleared if the result is non-zero; unchanged otherwise
V Set if an overflow is generated; cleared otherwise
C Set if an carry is generated; cleared otherwise

∗ ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 Register, Dx 1 1 0 0 0 0 Register, Dy
Chapter 4. Integer User Instructions 4-7

AND AND Logical AND
(All ColdFire Processors)

Operation: Source & Destination → Destination

Assembler Syntax: AND.L <ea>y,Dx
AND.L Dy,<ea>x

Attributes: Size = longword

Description: Performs an AND operation of the source operand with the destination
operand and stores the result in the destination location. The size of the operation is
specified as a longword. Address register contents may not be used as an operand.

The Dx mode is used when the destination is a data register; the destination <ea> mode is
invalid for a data register.

ANDI is used when the source is immediate data.

Instruction Fields:

• Register field—Specifies any of the 8 data registers.

• Opmode field:

Condition
Codes:

X N Z V C X Not affected
N Set if the msb of the result is set; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— ∗ ∗ 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 Data Register Opmode Effective Address

Mode Register

Byte Word Longword Operation

— — 010 <ea>y & Dx → Dx

— — 110 Dy & <ea>x → <ea>x
4-8 ColdFire Family Programmer’s Reference Manual

AND AND Logical AND

Instruction Fields (continued):

• Effective Address field—Determines addressing mode.

— For the source operand <ea>y, use addressing modes listed in the following
table:

— For the destination operand <ea>x, use addressing modes listed in the following
table:

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W 111 000

Ay — — (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> 111 100

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) 111 011

Addressing Mode Mode Register Addressing Mode Mode Register

Dx — — (xxx).W 111 000

Ax — — (xxx).L 111 001

(Ax) 010 reg. number:Ax #<data> — —

(Ax) + 011 reg. number:Ax

– (Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) 110 reg. number:Ax (d8,PC,Xi) — —
Chapter 4. Integer User Instructions 4-9

ANDI AND Immediate ANDI
(All ColdFire Processors)

Operation: Immediate Data & Destination → Destination

Assembler Syntax: ANDI.L #<data>,Dx

Attributes: Size = longword

Description: Performs an AND operation of the immediate data with the destination
operand and stores the result in the destination data register, Dx. The size of the operation
is specified as a longword. The size of the immediate data is specified as a longword. Note
that the immediate data is contained in the two extension words, with the first extension
word, bits [15:0], containing the upper word, and the second extension word, bits [15:0],
containing the lower word.

Instruction Fields:

• Destination Register field - specifies the destination data register, Dx.

Condition
Codes:

X N Z V C X Not affected
N Set if the msb of the result is set; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— ∗ ∗ 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 1 0 0 0 0 Destination
Register, Dx

Upper Word of Immediate Data

Lower Word of Immediate Data
4-10 ColdFire Family Programmer’s Reference Manual

ASL, ASR Arithmetic Shift ASL, ASR
(All ColdFire Processors)

Operation: Destination Shifted By Count → Destination

Assembler Syntax: ASd.L Dy,Dx
ASd.L #<data>,Dx
where d is direction, L or R

Attributes: Size = longword

Description: Arithmetically shifts the bits of the destination operand, Dx, in the direction
(L or R) specified. The size of the operand is a longword. CCR[C] receives the last bit
shifted out of the operand. The shift count is the number of bit positions to shift the
destination register and may be specified in two different ways:

1. Immediate—The shift count is specified in the instruction (shift range is 1 – 8).

2. Register—The shift count is the value in the data register, Dy, specified in the
instruction (modulo 64).

For ASL, the operand is shifted left; the shift count equals the number of positions shifted.
Bits shifted out of the high-order bit go to both the carry and the extend bits; zeros are
shifted into the low-order bit. The overflow bit is always zero.

.

.

For ASR, the operand is shifted right; the number of positions shifted equals the shift count.
Bits shifted out of the low-order bit go to both the carry and the extend bits; the sign bit
(msb) is shifted into the high-order bit.

CCR[C]CCR[C]

CCR[X]

0Operand

ASL:

CCR[C]CCR[C]

CCR[X]

msb Operand

ASR:
Chapter 4. Integer User Instructions 4-11

ASL, ASR Arithmetic Shift ASL, ASR

Note that CCR[V] is always cleared by ASL and ASR, unlike on the 68K family processors.

Instruction Fields:

• Count or Register field—Specifies shift count or register, Dy, that contains the shift
count:

— If i/r = 0, this field contains the shift count; values 1 – 7 represent counts of 1 –
7; a value of zero represents a count of 8.

— If i/r = 1, this field specifies the data register, Dy, that contains the shift count
(modulo 64).

• dr field—specifies the direction of the shift:

— 0 shift right

— 1 shift left

• i/r field

— If i/r = 0, specifies immediate shift count

— If i/r = 1, specifies register shift count

• Register field—Specifies a data register, Dx, to be shifted.

Condition
Codes:

X N Z V C X Set according to the last bit shifted out of the operand;
unaffected for a shift count of zero

N Set if the msb of the result is set; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Set according to the last bit shifted out of the operand;

cleared for a shift count of zero

∗ ∗ ∗ 0 ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 Count or
Register, Dy

dr 1 0 i/r 0 0 Register, Dx
4-12 ColdFire Family Programmer’s Reference Manual

Bcc Branch Conditionally Bcc
(All ColdFire Processors; .L supported starting with V4)

Operation: If Condition True
Then PC + dn → PC

Assembler Syntax: Bcc.sz <label>

Attributes: Size = byte, word, longword (longword supported starting with V4)

Description: If the condition is true, execution continues at (PC) + displacement. Branches
can be forward, with a positive displacement, or backward, with a negative displacement.
PC holds the address of the instruction word for the Bcc instruction, plus two. The
displacement is a two’s-complement integer that represents the relative distance in bytes
from the current PC to the destination PC. If the 8-bit displacement field is 0, a 16-bit
displacement (the word after the instruction) is used. If the 8-bit displacement field is 0xFF,
the 32-bit displacement (longword after the instruction) is used. A branch to the next
immediate instruction uses 16-bit displacement because the 8-bit displacement field is
0x00.

Condition code specifies one of the following tests, where C, N, V, and Z stand for the
condition code bits CCR[C], CCR[N], CCR[V] and CCR[Z], respectively:

Condition Codes: Not affected

Code Condition
Encod-

ing
Test Code Condition

Encod-
ing

Test

CC(HS) Carry clear 0100 C LS Lower or same 0011 C | Z

CS(LO) Carry set 0101 C LT Less than 1101 N & V | N & V

EQ Equal 0111 Z MI Minus 1011 N

GE Greater or equal 1100 N & V | N & V NE Not equal 0110 Z

GT Greater than 1110 N & V & Z | N & V & Z PL Plus 1010 N

HI High 0010 C & Z VC Overflow clear 1000 V

LE Less or equal 1111 Z | N & V | N & V VS Overflow set 1001 V
Chapter 4. Integer User Instructions 4-13

Bcc Branch Conditionally Bcc

Instruction Fields:

• Condition field—Binary encoding for one of the conditions listed in the table.

• 8-bit displacement field—Two’s complement integer specifying the number of bytes
between the branch and the next instruction to be executed if the condition is met.

• 16-bit displacement field—Used when the 8-bit displacement contains 0x00.

• 32-bit displacement field—Used when the 8-bit displacement contains 0xFF.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 Condition 8-bit displacement

16-bit displacement if 8-bit displacement = 0x00

32-bit displacement if 8-bit displacement = 0xFF

Bcc V2, V3 Core (ISA_A) V4 Core (ISA_B)

Opcode present Yes Yes

Operand sizes supported B,W B,W,L
4-14 ColdFire Family Programmer’s Reference Manual

BCHG Test a Bit and Change BCHG
(All ColdFire Processors)

Operation: ~ (<bit number> of Destination) → CCR[Z];
~ (<bit number> of Destination) → <bit number> of Destination

Assembler Syntax: BCHG.sz Dy,<ea>x
BCHG.sz #<data>,<ea>x

Attributes: Size = byte, longword

Description: Tests a bit in the destination operand and sets CCR[Z] appropriately, then
inverts the specified bit in the destination. When the destination is a data register, any of the
32 bits can be specified by the modulo 32-bit number. When the destination is a memory
location, the operation is a byte operation and the bit number is modulo 8. In all cases, bit
zero refers to the least significant bit. The bit number for this operation may be specified in
either of two ways:

1. Immediate—Bit number is specified in a second word of the instruction.

2. Register—Specified data register contains the bit number.

Bit Number Static, Specified as Immediate Data:

Condition
Codes:

X N Z V C X Not affected
N Not affected
Z Set if the bit tested is zero; cleared otherwise
V Not affected
C Not affected

— — ∗ — —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction
Format:

0 0 0 0 1 0 0 0 0 1 Destination Effective Address

Mode Register

0 0 0 0 0 0 0 0 Bit Number
Chapter 4. Integer User Instructions 4-15

BCHG Test a Bit and Change BCHG

Instruction Fields:

• Destination Effective Address field—Specifies the destination location <ea>x; use
only those data alterable addressing modes listed in the following table. Note that
longword is allowed only for the Dx mode, all others are byte only.

• Bit Number field—Specifies the bit number.

Bit Number Dynamic, Specified in a Register:

Instruction Fields:

• Data Register field—Specifies the data register, Dy, that contains the bit number.

• Destination Effective Address field—Specifies the destination location, <ea>x; use
only those data alterable addressing modes listed in the following table. Note that
longword is allowed only for the Dx mode, all others are byte only.

Addressing Mode Mode Register Addressing Mode Mode Register

Dx 000 reg. number:Dx (xxx).W — —

Ax — — (xxx).L — —

(Ax) 010 reg. number:Ax #<data> — —

(Ax) + 011 reg. number:Ax

– (Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) — — (d8,PC,Xi) — —

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 Data Register, Dy 1 0 1 Destination Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dx 000 reg. number:Dx (xxx).W 111 000

Ax — — (xxx).L 111 001

(Ax) 010 reg. number:Ax #<data> — —

(Ax) + 011 reg. number:Ax

– (Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) 110 reg. number:Ax (d8,PC,Xi) — —
4-16 ColdFire Family Programmer’s Reference Manual

BCLR Test a Bit and Clear BCLR
(All ColdFire Processors)

Operation: ~ (<bit number> of Destination) → CCR[Z];
0 → <bit number> of Destination

Assembler Syntax: BCLR.sz Dy,<ea>x
BCLR.sz #<data>,<ea>x

Attributes: Size = byte, longword

Description: Tests a bit in the destination operand and sets CCR[Z] appropriately, then
clears the specified bit in the destination. When a data register is the destination, any of the
32 bits can be specified by a modulo 32-bit number. When a memory location is the
destination, the operation is a byte operation and the bit number is modulo 8. In all cases,
bit zero refers to the least significant bit. The bit number for this operation can be specified
in either of two ways:

1. Immediate—Bit number is specified in a second word of the instruction.

2. Register—Specified data register contains the bit number.

Bit Number Static, Specified as Immediate Data:

Condition
Codes:

X N Z V C X Not affected
N Not affected
Z Set if the bit tested is zero; cleared otherwise
V Not affected
C Not affected

— — ∗ — —

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 1 0 Destination Effective Address

Mode Register

0 0 0 0 0 0 0 0 Bit Number
Chapter 4. Integer User Instructions 4-17

BCLR Test a Bit and Clear BCLR

Instruction Fields:

• Destination Effective Address field—Specifies the destination location <ea>x; use
only those data alterable addressing modes listed in the following table. Note that
longword is allowed only for the Dx mode, all others are byte only.

• Bit Number field—Specifies the bit number.

Bit Number Dynamic, Specified in a Register:

Instruction Fields:

• Data Register field—Specifies the data register, Dy, that contains the bit number.

• Destination Effective Address field—Specifies the destination location, <ea>x; use
only those data alterable addressing modes listed in the following table. Note that
longword is allowed only for the Dx mode, all others are byte only.

Addressing Mode Mode Register Addressing Mode Mode Register

Dx 000 reg. number:Dx (xxx).W — —

Ax — — (xxx).L — —

(Ax) 010 reg. number:Ax #<data> — —

(Ax) + 011 reg. number:Ax

– (Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) — — (d8,PC,Xi) — —

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 Data Register, Dy 1 1 0 Destination Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dx 000 reg. number:Dx (xxx).W 111 000

Ax — — (xxx).L 111 001

(Ax) 010 reg. number:Ax #<data> — —

(Ax) + 011 reg. number:Ax

– (Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) 110 reg. number:Ax (d8,PC,Xi) — —
4-18 ColdFire Family Programmer’s Reference Manual

BRA Branch Always BRA
(All ColdFire Processors; .L supported starting with V4)

Operation: PC + dn → PC

Assembler Syntax: BRA.sz <label>

Attributes: Size = byte, word, longword (longword supported starting with V4)

Description: Program execution continues at location (PC) + displacement. Branches can
be forward with a positive displacement, or backward with a negative displacement. The
PC contains the address of the instruction word of the BRA instruction plus two. The
displacement is a two’s complement integer that represents the relative distance in bytes
from the current PC to the destination PC. If the 8-bit displacement field in the instruction
word is 0, a 16-bit displacement (the word immediately following the instruction) is used.
If the 8-bit displacement field in the instruction word is all ones (0xFF), the 32-bit
displacement (longword immediately following the instruction) is used. A branch to the
next immediate instruction automatically uses the 16-bit displacement format because the
8-bit displacement field contains 0x00 (zero offset).

Condition codes: Not affected

Instruction Fields:

• 8-bit displacement field—Two’s complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed.

• 16-bit displacement field—Used for displacement when the 8-bit displacement
contains 0x00.

• 32-bit displacement field—Used for displacement when the 8-bit displacement
contains 0xFF.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 8-bit displacement

16-bit displacement if 8-bit displacement = 0x00

32-bit displacement if 8-bit displacement = 0xFF

BRA V2, V3 Core (ISA_A) V4 Core (ISA_B)

Opcode present Yes Yes

Operand sizes supported B,W B,W,L
Chapter 4. Integer User Instructions 4-19

BSET Test a Bit and Set BSET
(All ColdFire Processors)

Operation: ~ (<bit number> of Destination) → CCR[Z];
1 → <bit number> of Destination

Assembler Syntax: BSET.sz Dy,<ea>x
BSET.sz #<data >,<ea>x

Attributes: Size = byte, longword

Description: Tests a bit in the destination operand and sets CCR[Z] appropriately, then sets
the specified bit in the destination operand. When a data register is the destination, any of
the 32 bits can be specified by a modulo 32-bit number. When a memory location is the
destination, the operation is a byte operation and the bit number is modulo 8. In all cases,
bit 0 refers to the least significant bit. The bit number for this operation can be specified in
either of two ways:

1. Immediate—Bit number is specified in the second word of the instruction.

2. Register—Specified data register contains the bit number.

Bit Number Static, Specified as Immediate Data:

Condition
Codes:

X N Z V C X Not affected
N Not affected
Z Set if the bit tested is zero; cleared otherwise
V Not affected
C Not affected

— — ∗ — —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction
Format:

0 0 0 0 1 0 0 0 1 1 Destination Effective Address

Mode Register

0 0 0 0 0 0 0 0 Bit Number
4-20 ColdFire Family Programmer’s Reference Manual

BSET Test a Bit and Set BSET

Instruction Fields:

• Destination Effective Address field—Specifies the destination location <ea>x; use
only those data alterable addressing modes listed in the following table. Note that
longword is allowed only for the Dx mode; all others are byte only.

• Bit Number field—Specifies the bit number.

Bit Number Dynamic, Specified in a Register:

Instruction Fields:

• Data Register field—Specifies the data register, Dy, that contains the bit number.

• Destination Effective Address field—Specifies the destination location, <ea>x; use
only those data alterable addressing modes listed in the following table. Note that
longword is allowed only for the Dx mode, all others are byte only.

Addressing Mode Mode Register Addressing Mode Mode Register

Dx 000 reg. number:Dx (xxx).W — —

Ax — — (xxx).L — —

(Ax) 010 reg. number:Ax #<data> — —

(Ax) + 011 reg. number:Ax

– (Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) — — (d8,PC,Xi) — —

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 Data Register, Dy 1 1 1 Destination Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dx 000 reg. number:Dx (xxx).W 111 000

Ax — — (xxx).L 111 001

(Ax) 010 reg. number:Ax #<data> — —

(Ax) + 011 reg. number:Ax

– (Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) 110 reg. number:Ax (d8,PC,Xi) — —
Chapter 4. Integer User Instructions 4-21

BSR Branch to Subroutine BSR
(All ColdFire Processors; .L supported starting with V4)

Operation: SP – 4 → SP; nextPC → (SP); PC + dn → PC

Assembler Syntax: BSR.sz <label>

Attributes: Size = byte, word, longword (longword supported starting with V4)

Description: Pushes the longword address of the instruction immediately following the
BSR instruction onto the system stack. Branches can be forward with a positive
displacement, or backward with a negative displacement.The PC contains the address of the
instruction word, plus two. Program execution then continues at location (PC) +
displacement. The displacement is a two’s complement integer that represents the relative
distance in bytes from the current PC to the destination PC. If the 8-bit displacement field
in the instruction word is 0, a 16-bit displacement (the word immediately following the
instruction) is used. If the 8-bit displacement field in the instruction word is all ones (0xFF),
the 32-bit displacement (longword immediately following the instruction) is used. A branch
to the next immediate instruction automatically uses the 16-bit displacement format
because the 8-bit displacement field contains 0x00 (zero offset).

Condition Codes: Not affected

Instruction Fields:

• 8-bit displacement field—Two’s complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed.

• 16-bit displacement field—Used for displacement when the 8-bit displacement
contains 0x00.

• 32-bit displacement field—Used for displacement when the 8-bit displacement
contains 0xFF.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 1 8-bit displacement

16-bit displacement if 8-bit displacement = 0x00

32-bit displacement if 8-bit displacement = 0xFF

BSR V2, V3 Core (ISA_A) V4 Core (ISA_B)

Opcode present Yes Yes

Operand sizes supported B,W B,W,L
4-22 ColdFire Family Programmer’s Reference Manual

BTST Test a Bit BTST
(All ColdFire Processors)

Operation: ~ (<bit number> of Destination) → CCR[Z]

Assembler Syntax: BTST.sz Dy,<ea>x
BTST.sz #<data>,<ea>x

Attributes: Size = byte, longword

Description: Tests a bit in the destination operand and sets CCR[Z] appropriately. When a
data register is the destination, any of the 32 bits can be specified by a modulo 32 bit
number. When a memory location is the destination, the operation is a byte operation and
the bit number is modulo 8. In all cases, bit 0 refers to the least significant bit. The bit
number for this operation can be specified in either of two ways:

1. Immediate—Bit number is specified in a second word of the instruction.

2. Register—Specified data register contains the bit number.

Bit Number Static, Specified as Immediate Data:

Instruction Fields:

• Destination Effective Address field—Specifies the destination location <ea>x; use
only those data alterable addressing modes listed in the following table. Note that
longword is allowed only for the Dx mode, all others are byte only.

Condition
Codes:

X N Z V C X Not affected
N Not affected
Z Set if the bit tested is zero; cleared otherwise
V Not affected
C Not affected

— — ∗ — —

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 0 0 Destination Effective Address

Mode Register

0 0 0 0 0 0 0 0 Bit Number

Addressing Mode Mode Register Addressing Mode Mode Register

Dx 000 reg. number:Dx (xxx).W — —

Ax — — (xxx).L — —

(Ax) 010 reg. number:Ax #<data> — —

(Ax) + 011 reg. number:Ax

– (Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) — — (d8,PC,Xi) — —
Chapter 4. Integer User Instructions 4-23

BTST Test a Bit BTST

Instruction Fields (continued):

• Bit Number field—Specifies the bit number.

Bit Number Dynamic, Specified in a Register:

Instruction Fields:

• Data Register field—Specifies the data register, Dy, that contains the bit number.

• Destination Effective Address field—Specifies the destination location, <ea>x; use
only those data alterable addressing modes listed in the following table. Note that
longword is allowed only for the Dx mode, all others are byte only.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 Data Register, Dy 1 0 0 Destination Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dx 000 reg. number:Dx (xxx).W 111 000

Ax — — (xxx).L 111 001

(Ax) 010 reg. number:Ax #<data> 111 100

(Ax) + 011 reg. number:Ax

– (Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) 111 010

(d8,Ax,Xi) 110 reg. number:Ax (d8,PC,Xi) 111 011
4-24 ColdFire Family Programmer’s Reference Manual

CLR Clear an Operand CLR
(All ColdFire Processors)

Operation: 0 → Destination

Assembler Syntax: CLR.sz <ea>x

Attributes: Size = byte, word, longword

Description: Clears the destination operand to 0. The size of the operation may be specified
as byte, word, or longword.

Instruction Fields:

• Size field—Specifies the size of the operation

— 00 byte operation

— 01 word operation

— 10 longword operation

— 11 reserved

• Effective Address field—Specifies the destination location, <ea>x; use only those
data alterable addressing modes listed in the following table:

Condition
Codes:

X N Z V C X Not affected
N Always cleared
Z Always set
V Always cleared
C Always cleared

— 0 1 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 Size Destination Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dx 000 reg. number:Dx (xxx).W 111 000

Ax — — (xxx).L 111 001

(Ax) 010 reg. number:Ax #<data> — —

(Ax) + 011 reg. number:Ax

– (Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) 110 reg. number:Ax (d8,PC,Xi) — —
Chapter 4. Integer User Instructions 4-25

CMP Compare CMP
(All ColdFire Processors; .B and .W supported starting with V4)

Operation: Destination – Source → cc

Assembler Syntax: CMP.sz <ea>y,Dx

Attributes: Size = byte, word, longword (byte, word supported starting with V4)

Description: Subtracts the source operand from the destination operand in the data register
and sets condition codes according to the result; the data register is unchanged. The
operation size may be a byte, word, or longword. CMPA is used when the destination is an
address register; CMPI is used when the source is immediate data.

Instruction Fields:

• Register field—Specifies the destination register, Dx.

• Opmode field:

• Source Effective Address field— Specifies the source operand, <ea>y; use
addressing modes listed in the following table:

Condition
Codes:

X N Z V C X Not affected
N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if an overflow occurs; cleared otherwise
C Set if a borrow occurs; cleared otherwise

— ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 Destination
Register, Dx

Opmode Source Effective Address

Mode Register

Byte Word Longword Operation

000 001 010 Dx - <ea>y

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W 111 000

Ay 001 reg. number:Ay (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> 111 100

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) 111 011

CMP V2, V3 Core (ISA_A) V4 Core (ISA_B)

Opcode present Yes Yes

Operand sizes supported L B,W,L
4-26 ColdFire Family Programmer’s Reference Manual

CMPA Compare Address CMPA
(All ColdFire Processors; .W supported starting with V4)

Operation: Destination – Source → cc

Assembler Syntax: CMPA.sz <ea>y, Ax

Attributes: Size = word, longword (word supported starting with V4)

Description: Operates similarly to CMP, but is used when the destination register is an
address register rather than a data register. The operation size can be word or longword.
Word-length source operands are sign-extended to 32 bits for comparison.

Instruction Fields:

• Address Register field—Specifies the destination register, Ax.

• Opmode field:

• Source Effective Address field specifies the source operand, <ea>y; use addressing
modes in the following table:

Condition
Codes:

X N Z V C X Not affected
N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if an overflow occurs; cleared otherwise
C Set if a borrow occurs; cleared otherwise

— ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 Address Register,
Ax

Opmode Source Effective Address

Mode Register

Byte Word Longword Operation

— 011 111 Ax - <ea>y

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W 111 000

Ay 001 reg. number:Ay (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> 111 100

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) 111 011

CMPA V2, V3 Core (ISA_A) V4 Core (ISA_B)

Opcode present Yes Yes

Operand sizes supported L W,L
Chapter 4. Integer User Instructions 4-27

CMPI Compare Immediate CMPI
(All ColdFire Processors; .B and .W supported starting with V4)

Operation: Destination – Immediate Data→ cc

Assembler Syntax: CMPI.sz #<data>,Dx

Attributes: Size = byte, word, longword (byte, word supported starting with V4)

Description: Operates similarly to CMP, but is used when the source operand is immediate
data. The operation size can be byte, word, or longword. The size of the immediate data
matches the operation size. Note that if size = byte, the immediate data is contained in bits
[7:0] of the single extension word. If size = word, the immediate data is contained in the
single extension word, bits [15:0]. If size = longword, the immediate data is contained in
the two extension words, with the first extension word, bits [15:0], containing the upper
word, and the second extension word, bits [15:0], containing the lower word.

Instruction Fields:

• Register field—Specifies the destination register, Dx.

• Size field—Specifies the size of the operation

— 00 byte operation

— 01 word operation

— 10 longword operation

— 11 reserved

Condition
Codes:

X N Z V C X Not affected
N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if an overflow occurs; cleared otherwise
C Set if a borrow occurs; cleared otherwise

— ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 Size 0 0 0 Register, Dx

Upper Word of Immediate Data

Lower Word of Immediate Data

CMPI V2, V3 Core (ISA_A) V4 Core (ISA_B)

Opcode present Yes Yes

Operand sizes supported L B,W,L
4-28 ColdFire Family Programmer’s Reference Manual

DIVS Signed Divide DIVS
(All ColdFire Processors Starting with MCF5206e)

Operation: Destination/Source → Destination

Assembler Syntax: DIVS.W <ea>y,Dx 32-bit Dx/16-bit <ea>y → (16r:16q) in Dx
DIVS.L <ea>y,Dx 32-bit Dx/32-bit <ea>y → 32q in Dx
where q indicates the quotient, and r indicates the remainder

Attributes: Size = word, longword

Description: Divide the signed destination operand by the signed source and store the
signed result in the destination. For a word-sized operation, the destination operand is a
longword and the source is a word; the 16-bit quotient is in the lower word and the 16-bit
remainder is in the upper word of the destination. Note that the sign of the remainder is the
same as the sign of the dividend. For a longword-sized operation, the destination and source
operands are both longwords; the 32-bit quotient is stored in the destination. To determine
the remainder on a longword-sized operation, use the REMS instruction.

An attempt to divide by zero results in a divide-by-zero exception and no registers are
affected. The resulting exception stack frame points to the offending divide opcode. If
overflow is detected, the destination register is unaffected. An overflow occurs if the
quotient is larger than a 16-bit (.W) or 32-bit (.L) signed integer.

Condition
Codes:

X N Z V C X Not affected
N Cleared if overflow is detected; otherwise set if the

quotient is negative, cleared if positive
Z Cleared if overflow is detected; otherwise set if the

quotient is zero, cleared if nonzero
V Set if an overflow occurs; cleared otherwise
C Always cleared

— ∗ ∗ ∗ 0

Instruction
Format:
(Word)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 Register, Dx 1 1 1 Source Effective Address

Mode Register
Chapter 4. Integer User Instructions 4-29

DIVS Signed Divide DIVS

Instruction Fields (Word):

• Register field—Specifies the destination register, Dx.

• Source Effective Address field specifies the source operand, <ea>y; use addressing
modes in the following table:

Instruction Fields (Longword):

• Register field—Specifies the destination register, Dx. Note that this field appears
twice in the instruction format.

• Source Effective Address field— Specifies the source operand, <ea>y; use
addressing modes in the following table:

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W 111 000

Ay — — (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> 111 100

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) 111 011

Instruction
Format:
(Longword)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 1 Source Effective Address

Mode Register

0 Register, Dx 1 0 0 0 0 0 0 0 0 Register, Dx

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay #<data> — —

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
4-30 ColdFire Family Programmer’s Reference Manual

DIVU Unsigned Divide DIVU
(All ColdFire Processors Starting with MCF5206e)

Operation: Destination/Source → Destination

Assembler Syntax: DIVU.W <ea>y,Dx 32-bit Dx/16-bit <ea>y → (16r:16q) in Dx
DIVU.L <ea>y,Dx 32-bit Dx/32-bit <ea>y → 32q in Dx
where q indicates the quotient, and r indicates the remainder

Attributes: Size = word, longword

Description: Divide the unsigned destination operand by the unsigned source and store the
unsigned result in the destination. For a word-sized operation, the destination operand is a
longword and the source is a word; the 16-bit quotient is in the lower word and the 16-bit
remainder is in the upper word of the destination. For a longword-sized operation, the
destination and source operands are both longwords; the 32-bit quotient is stored in the
destination. To determine the remainder on a longword-sized operation, use the REMU
instruction.

An attempt to divide by zero results in a divide-by-zero exception and no registers are
affected. The resulting exception stack frame points to the offending divide opcode. If
overflow is detected, the destination register is unaffected. An overflow occurs if the
quotient is larger than a 16-bit (.W) or 32-bit (.L) unsigned integer.

Condition
Codes:

X N Z V C X Not affected
N Cleared if overflow is detected; otherwise set if the

quotient is negative, cleared if positive
Z Cleared if overflow is detected; otherwise set if the

quotient is zero, cleared if nonzero
V Set if an overflow occurs; cleared otherwise
C Always cleared

— ∗ ∗ ∗ 0

Instruction
Format:
(Word)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 Register, Dx 0 1 1 Source Effective Address

Mode Register
Chapter 4. Integer User Instructions 4-31

DIVU Unsigned Divide DIVU

Instruction Fields (Word):

• Register field—Specifies the destination register, Dx.

• Source Effective Address field specifies the source operand, <ea>y; use addressing
modes in the following table:

Instruction Fields (Longword):

• Register field—Specifies the destination register, Dx. Note that this field appears
twice in the instruction format.

• Source Effective Address field— Specifies the source operand, <ea>y; use
addressing modes in the following table:

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W 111 000

Ay — — (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> 111 100

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) 111 011

Instruction
Format:
(Longword)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 1 Source Effective Address

Mode Register

0 Register, Dx 0 0 0 0 0 0 0 0 0 Register, Dx

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay #<data> — —

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
4-32 ColdFire Family Programmer’s Reference Manual

EOR Exclusive-OR Logical EOR
(All ColdFire Processors)

Operation: Source ^ Destination → Destination

Assembler Syntax: EOR.L Dy,<ea>x

Attributes: Size = longword

Description: Performs an exclusive-OR operation on the destination operand using the
source operand and stores the result in the destination location. The size of the operation is
specified as a longword. The source operand must be a data register. The destination
operand is specified in the effective address field. EORI is used when the source is
immediate data.

Instruction Fields:

• Register field—Specifies any of the 8 data registers for the source operand, Dy.

• Destination Effective Address field—Specifies the destination operand, <ea>x; use
addressing modes in the following table:

Condition
Codes:

X N Z V C X Not affected
N Set if the msb of the result is set; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— ∗ ∗ 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 Register, Dy 1 1 0 Destination Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dx 000 reg. number:Dx (xxx).W 111 000

Ax — — (xxx).L 111 001

(Ax) 010 reg. number:Ax #<data> — —

(Ax) + 011 reg. number:Ax

– (Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) 110 reg. number:Ax (d8,PC,Xi) — —
Chapter 4. Integer User Instructions 4-33

EORI Exclusive-OR Immediate EORI
(All ColdFire Processors)

Operation: Immediate Data ^ Destination → Destination

Assembler Syntax: EORI.L #<data>,Dx

Attributes: Size = longword

Description: Performs an exclusive-OR operation on the destination operand using the
immediate data and the destination operand and stores the result in the destination data
register, Dx. The size of the operation is specified as a longword. Note that the immediate
data is contained in the two extension words, with the first extension word, bits [15:0],
containing the upper word, and the second extension word, bits [15:0], containing the lower
word.

Instruction Fields:

• Register field - Destination data register, Dx.

Condition
Codes:

X N Z V C X Not affected
N Set if the msb of the result is set; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— ∗ ∗ 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 1 0 0 0 0 Register, Dx

Upper Word of Immediate Data

Lower Word of Immediate Data
4-34 ColdFire Family Programmer’s Reference Manual

EXT, EXTB Sign-Extend EXT, EXTB
(All ColdFire Processors)

Operation: Destination Sign-Extended → Destination

Assembler Syntax: EXT.W Dx extend byte to word
EXT.L Dx extend word to longword
EXTB.L Dx extend byte to longword

Attributes: Size = word, longword

Description: Extends a byte in a data register, Dx, to a word or a longword, or a word in a
data register to a longword, by replicating the sign bit to the left. When the EXT operation
extends a byte to a word, bit 7 of the designated data register is copied to bits 15 – 8 of the
data register. When the EXT operation extends a word to a longword, bit 15 of the
designated data register is copied to bits 31 – 16 of the data register. The EXTB form copies
bit 7 of the designated register to bits 31 – 8 of the data register.

Instruction Fields:

• Opmode field—Specifies the size of the sign-extension operation:

— 010 sign-extend low-order byte of data register to word

— 011 sign-extend low-order word of data register to longword

— 111 sign-extend low-order byte of data register to longword

• Register field—Specifies the data register, Dx, to be sign-extended.

Condition
Codes:

X N Z V C X Not affected
N Set if result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— ∗ ∗ 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 Opmode 0 0 0 Register, Dx
Chapter 4. Integer User Instructions 4-35

ILLEGAL Take Illegal Instruction Trap ILLEGAL
(All ColdFire Processors)

Operation: SP - 4 → SP; PC → (SP) (forcing stack to be longword aligned)
SP - 2 → SP; SR → (SP)
SP - 2 → SP; Vector Offset → (SP)
(VBR + 0x10) → PC

Assembler Syntax: ILLEGAL

Attributes: Unsized

Description: Execution of this instruction causes an illegal instruction exception. The
opcode for ILLEGAL is 0x4AFC.

Starting with V4 (for devices which have an MMU), the Supervisor Stack Pointer (SSP) is
used for this instruction.

Condition Codes: Not affected.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0
4-36 ColdFire Family Programmer’s Reference Manual

JMP Jump JMP
(All ColdFire Processors)

Operation: Destination Address → PC

Assembler Syntax: JMP <ea>y

Attributes: Unsized

Description: Program execution continues at the effective address specified by the
instruction.

Condition Codes: Not affected.

Instruction Field:

• Source Effective Address field—Specifies the address of the next instruction, <ea>y;
use the control addressing modes in the following table:

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 1 1 Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy — — (xxx).W 111 000

Ay — — (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> — —

(Ay) + — —

– (Ay) — —

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) 111 011
Chapter 4. Integer User Instructions 4-37

JSR Jump to Subroutine JSR
(All ColdFire Processors)

Operation: SP – 4 → SP; nextPC → (SP); Destination Address → PC

Assembler Syntax: JSR <ea>y

Attributes: Unsized

Description: Pushes the longword address of the instruction immediately following the
JSR instruction onto the system stack. Program execution then continues at the address
specified in the instruction.

Condition Codes: Not affected

Instruction Field:

• Source Effective Address field—Specifies the address of the next instruction, <ea>y;
use the control addressing modes in the following table:

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 1 0 Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy — — (xxx).W 111 000

Ay — — (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> — —

(Ay) + — —

– (Ay) — —

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) 111 011
4-38 ColdFire Family Programmer’s Reference Manual

LEA Load Effective Address LEA
(All ColdFire Processors)

Operation: <ea>y → Ax

Assembler Syntax: LEA.L <ea>y,Ax

Attributes: Size = longword

Description: Loads the effective address into the specified address register, Ax.

Condition Codes: Not affected

Instruction Fields:

• Register field—Specifies the address register, Ax, to be updated with the effective
address.

• Source Effective Address field—Specifies the address to be loaded into the
destination address register; use the control addressing modes in the following table:

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 Register, Ax 1 1 1 Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy — — (xxx).W 111 000

Ay — — (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> — —

(Ay) + — —

– (Ay) — —

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) 111 011
Chapter 4. Integer User Instructions 4-39

LINK Link and Allocate LINK
(All ColdFire Processors)

Operation: SP – 4 → SP; Ay → (SP); SP → Ay; SP + dn → SP

Assembler Syntax: LINK.W Ay,#<displacement>

Attributes: Size = Word

Description: Pushes the contents of the specified address register onto the stack. Then
loads the updated stack pointer into the address register. Finally, adds the displacement
value to the stack pointer. The displacement is the sign-extended word following the
operation word. Note that although LINK is a word-sized instruction, most assemblers also
support an unsized LINK.

Condition Codes: Not affected

Instruction Fields:

• Register field—Specifies the address register, Ay, for the link.

• Displacement field—Specifies the two’s complement integer to be added to the stack
pointer.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 0 1 0 Register, Ay

Word Displacement
4-40 ColdFire Family Programmer’s Reference Manual

LSL, LSR Logical Shift LSL, LSR
(All ColdFire Processors)

Operation: Destination Shifted By Count → Destination

Assembler Syntax: LSd.L Dy,Dx
LSd.L #<data>,Dx
where d is direction, L or R

Attributes: Size = longword

Description: Shifts the bits of the destination operand, Dx, in the direction (L or R)
specified. The size of the operand is a longword. CCR[C] receives the last bit shifted out of
the operand. The shift count is the number of bit positions to shift the destination register
and may be specified in two different ways:

1. Immediate—The shift count is specified in the instruction (shift range is 1 – 8).

2. Register—The shift count is the value in the data register, Dy, specified in the
instruction (modulo 64).

The LSL instruction shifts the operand to the left the number of positions specified as the
shift count. Bits shifted out of the high-order bit go to both the carry and the extend bits;
zeros are shifted into the low-order bit.

.

The LSR instruction shifts the operand to the right the number of positions specified as the
shift count. Bits shifted out of the low-order bit go to both the carry and the extend bits;
zeros are shifted into the high-order bit.

.

CCR[C]CCR[C]

CCR[X]

0Operand

LSL:

CCR[C]CCR[C]

CCR[X]

0 Operand

LSR:
Chapter 4. Integer User Instructions 4-41

LSL, LSR Logical Shift LSL, LSR

Instruction Fields:

• Count/Register field

— If i/r = 0, this field contains the shift count; values 1 – 7 represent shifts of 1 – 7;
value of 0 specifies shift count of 8

— If i/r = 1, data register, Dy, specified in this field contains shift count (modulo 64)

• dr field—Specifies the direction of the shift:

— 0 shift right

— 1 shift left

• i/r field

— 0 immediate shift count

— 1 register shift count

• Register field—Specifies a data register, Dx, to be shifted.

Condition
Codes:

X N Z V C X Set according to the last bit shifted out of the operand;
unaffected for a shift count of zero

N Set if result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Set according to the last bit shifted out of the operand;

cleared for a shift count of zero

∗ ∗ ∗ 0 ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 Count or
Register, Dy

dr 1 0 i/r 0 1 Register, Dx
4-42 ColdFire Family Programmer’s Reference Manual

MOV3Q Move 3-Bit Data Quick MOV3Q
(Supported starting with V4)

Operation: 3-bit Immediate Data → Destination

Assembler Syntax: MOV3Q.L #<data>,<ea>x

Attributes: Size = longword

Description: Move the immediate data to the operand at the destination location. The data
range is from -1 to 7, excluding 0. The 3-bit immediate operand is sign extended to a
longword operand and all 32 bits are transferred to the destination location.

Instruction Fields:

• Immediate data field—3 bits of data having a range {-1,1-7} where a data value of
0 represents -1.

• Destination Effective Address field—Specifies the destination operand, <ea>x; use
only data addressing modes listed in the following table:

Condition
Codes:

X N Z V C X Not affected
N Set if result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— ∗ ∗ 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 Immediate Data 1 0 1 Destination Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dx 000 reg. number:Dx (xxx).W 111 000

Ax 001 reg. number:Ax (xxx).L 111 001

(Ax) 010 reg. number:Ax #<data> — —

(Ax) + 011 reg. number:Ax

– (Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) 110 reg. number:Ax (d8,PC,Xi) — —

MOV3Q V2, V3 Core (ISA_A) V4 Core (ISA_B)

Opcode present No Yes

Operand sizes supported — L
Chapter 4. Integer User Instructions 4-43

MOVE Move Data from Source to Destination MOVE
(All ColdFire Processors)

Operation: Source → Destination

Assembler Syntax: MOVE.sz <ea>y,<ea>x

Attributes: Size = byte, word, longword

Description: Moves the data at the source to the destination location and sets the condition
codes according to the data. The size of the operation may be specified as byte, word, or
longword. MOVEA is used when the destination is an address register. MOVEQ is used to
move an immediate 8-bit value to a data register. MOV3Q (supported starting with V4) is
used to move a 3-bit immediate value to any effective destination address.

Instruction fields:

• Size field—Specifies the size of the operand to be moved:

— 01 byte operation

— 11 word operation

— 10 longword operation

— 11 reserved

• Destination Effective Address field—Specifies destination location, <ea>x; the table
below lists possible data alterable addressing modes. The restrictions on
combinations of source and destination addressing modes are listed in the table at
the bottom of the next page.

Condition
Codes:

X N Z V C X Not affected
N Set if result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— ∗ ∗ 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 Size Destination Effective Address Source Effective Address

Register Mode Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dx 000 reg. number:Dx (xxx).W 111 000

Ax — — (xxx).L 111 001

(Ax) 010 reg. number:Ax #<data> — —

(Ax) + 011 reg. number:Ax

– (Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) 110 reg. number:Ax (d8,PC,Xi) — —
4-44 ColdFire Family Programmer’s Reference Manual

MOVE Move Data from Source to Destination MOVE

Instruction fields (continued):

• Source Effective Address field—Specifies source operand, <ea>y; the table below
lists possible addressing modes. The restrictions on combinations of source and
destination addressing modes are listed in the table at the bottom of the next page.

NOTE:
Not all combinations of source/destination addressing modes
are possible. The table below shows the possible combinations.
Starting with V4, the combination of #<xxx>,d16(Ax) can be
used with MOVE.B and MOVE.W opcodes.

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W 111 000

Ay 001 reg. number:Ay (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> 111 100

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) 111 011

Source Addressing Mode Destination Addressing Mode

Dy, Ay, (Ay), (Ay)+,-(Ay) All possible

(d16, Ay), (d16, PC) All possible except (d8, Ax, Xi), (xxx).W, (xxx).L

(d8, Ay, Xi), (d8, PC, Xi), (xxx).W, (xxx).L, #<xxx> All possible except (d8, Ax, Xi), (xxx).W, (xxx).L

MOVE V2, V3 Core (ISA_A) V4 Core (ISA_B)

Opcode present Yes Yes

Operand sizes supported B,W,L
except

MOVE.sz #<data>, d16(Ax)

B,W,L
including

MOVE.{B,W} #<data>, d16(Ax)
Chapter 4. Integer User Instructions 4-45

MOVEA Move Address from Source to Destination MOVEA
(All ColdFire Processors)

Operation: Source → Destination

Assembler Syntax: MOVEA.sz <ea>y,Ax

Attributes: Size = word, longword

Description: Moves the address at the source to the destination address register. The size
of the operation may be specified as word or longword. Word size source operands are sign
extended to 32-bit quantities before the operation is done.

Condition Codes: Not affected

Instruction fields:

• Size field—Specifies the size of the operand to be moved:

— 0x reserved

— 11 word operation

— 10 longword operation

• Destination Register field — Specifies the destination address register, Ax.

• Source Effective Address field—Specifies the source operand, <ea>y; the table
below lists possible modes.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 Size Destination
Register, Ax

0 0 1 Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W 111 000

Ay 001 reg. number:Ay (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> 111 100

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) 111 011
4-46 ColdFire Family Programmer’s Reference Manual

MOVEM Move Multiple Registers MOVEM
(All ColdFire Processors)

Operation: Registers → Destination;
Source → Registers

Assembler Syntax: MOVEM.L #list,<ea>x
MOVEM.L <ea>y,#list

Attributes: Size = longword

Description: Moves the contents of selected registers to or from consecutive memory
locations starting at the location specified by the effective address. A register is selected if
the bit in the mask field corresponding to that register is set.

The registers are transferred starting at the specified address, and the address is incremented
by the operand length (4) following each transfer. The order of the registers is from D0 to
D7, then from A0 to A7.

Condition Codes: Not affected

Instruction Fields:

• dr field—Specifies the direction of the transfer:

— 0 register to memory

— 1 memory to register

• Effective Address field—Specifies the memory address for the data transfer. For
register-to-memory transfers, use the following table for <ea>x.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 dr 0 0 1 1 Effective Address

Mode Register

Register List Mask

Addressing Mode Mode Register Addressing Mode Mode Register

Dx — — (xxx).W — —

Ax — — (xxx).L — —

(Ax) 010 reg. number:Ax #<data> — —

(Ax) + — —

– (Ax) — —

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) — — (d8,PC,Xi) — —
Chapter 4. Integer User Instructions 4-47

MOVEM Move Multiple Registers MOVEM

Instruction Fields (continued):

• Effective Address field (continued)—For memory-to-register transfers, use the
following table for <ea>y.

• Register List Mask field—Specifies the registers to be transferred. The low-order bit
corresponds to the first register to be transferred; the high-order bit corresponds to
the last register to be transferred. The mask correspondence is shown below.

Addressing Mode Mode Register Addressing Mode Mode Register

Dy — — (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay #<data> — —

(Ay) + — —

– (Ay) — —

(d16,Ay) 101 reg. number:Ay (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
4-48 ColdFire Family Programmer’s Reference Manual

MOVEQ Move Quick MOVEQ
(All ColdFire Processors)

Operation: Immediate Data → Destination

Assembler Syntax: MOVEQ.L #<data>,Dx

Attributes: Size = longword

Description: Moves a byte of immediate data to a 32-bit data register, Dx. The data in an
8-bit field within the operation word is sign-extended to a longword operand in the data
register as it is transferred.

Instruction Fields:

• Register field—Specifies the data register, Dx, to be loaded.

• Data field—8 bits of data, which are sign-extended to a longword operand.

Condition
Codes:

X N Z V C X Not affected
N Set if result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— ∗ ∗ 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 Register, Dx 0 Immediate Data
Chapter 4. Integer User Instructions 4-49

MOVE MOVE
from CCR Move from the from CCR

 Condition Code Register
(All ColdFire Processors)

Operation: CCR → Destination

Assembler Syntax: MOVE.W CCR,Dx

Attributes: Size = Word

Description: Moves the condition code bits (zero-extended to word size) to the destination
location, Dx. The operand size is a word. Unimplemented bits are read as zeros.

Condition Codes: Not affected

Instruction Field:

• Register field - Specifies destination data register, Dx.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 1 1 0 0 0 Register, Dx
4-50 ColdFire Family Programmer’s Reference Manual

MOVE MOVE
to CCR Move to the to CCR

 Condition Code Register
(All ColdFire Processors)

Operation: Source → CCR

Assembler Syntax: MOVE.B Dy,CCR
MOVE.B #<data>,CCR

Attributes: Size = Byte

Description: Moves the low-order byte of the source operand to the condition code register.
The upper byte of the source operand is ignored; the upper byte of the status register is not
altered.

Instruction Field:

• Effective Address field—Specifies the location of the source operand; use only those
data addressing modes listed in the following table:

Condition
Codes:

X N Z V C X Set to the value of bit 4 of the source operand
N Set to the value of bit 3 of the source operand
Z Set to the value of bit 2 of the source operand
V Set to the value of bit 1 of the source operand
C Set to the value of bit 0 of the source operand

∗ ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 1 1 Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) — — #<data> 111 100

(Ay) + — —

– (Ay) — —

(d16,Ay) — — (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
Chapter 4. Integer User Instructions 4-51

MULS Signed Multiply MULS
(All ColdFire Processors)

Operation: Source * Destination → Destination

Assembler Syntax: MULS.W <ea>y,Dx 16 x 16 → 32
MULS.L <ea>y,Dx 32 x 32 → 32

Attributes: Size = word, longword

Description: Multiplies two signed operands yielding a signed result. This instruction has
a word operand form and a longword operand form.

In the word form, the multiplier and multiplicand are both word operands, and the result is
a longword operand. A register operand is the low-order word; the upper word of the
register is ignored. All 32 bits of the product are saved in the destination data register.

In the longword form, the multiplier and multiplicand are both longword operands. The
destination data register stores the low order 32-bits of the product. The upper 32 bits of the
product are discarded.

Note that CCR[V] is always cleared by MULS, unlike the 68K family processors.

Instruction Fields (Word):

• Register field—Specifies the destination data register, Dx.

• Effective Address field—Specifies the source operand, <ea>y; use only those data
addressing modes listed in the following table:

Condition
Codes:

X N Z V C X Not affected
N Set if result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— ∗ ∗ 0 0

Instruction
Format:
(Word)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 Register, Dx 1 1 1 Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W 111 000

Ay — — (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> 111 100

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) 111 011
4-52 ColdFire Family Programmer’s Reference Manual

MULS Signed Multiply MULS

Instruction Fields (Longword):

• Source Effective Address field—Specifies the source operand; use only data
addressing modes listed in the following table:

• Register field—Specifies a data register, Dx, for the destination operand; the 32-bit
multiplicand comes from this register, and the low-order 32 bits of the product are
loaded into this register.

Instruction
Format:
(Longword)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 0 Source Effective Address

Mode Register

0 Register, Dx 1 0 0 0 0 0 0 0 0 0 0 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay #<data> — —

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
Chapter 4. Integer User Instructions 4-53

MULU Unsigned Multiply MULU
(All ColdFire Processors)

Operation: Source * Destination → Destination

Assembler Syntax: MULU.W <ea>y,Dx 16 x 16 → 32
MULU.L <ea>y,Dx 32 x 32 → 32

Attributes: Size = word, longword

Description: Multiplies two unsigned operands yielding an unsigned result. This
instruction has a word operand form and a longword operand form.

In the word form, the multiplier and multiplicand are both word operands, and the result is
a longword operand. A register operand is the low-order word; the upper word of the
register is ignored. All 32 bits of the product are saved in the destination data register.

In the longword form, the multiplier and multiplicand are both longword operands, and the
destination data register stores the low order 32 bits of the product. The upper 32 bits of the
product are discarded.

Note that CCR[V] is always cleared by MULU, unlike the 68K family processors.

Instruction Fields (Word):

• Register field—Specifies the destination data register, Dx.

• Effective Address field—Specifies the source operand, <ea>y; use only those data
addressing modes listed in the following table:

Condition
Codes:

X N Z V C X Not affected
N Set if result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— ∗ ∗ 0 0

Instruction
Format:
(Word)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 Register, Dx 0 1 1 Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W 111 000

Ay — — (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> 111 100

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) 111 011
4-54 ColdFire Family Programmer’s Reference Manual

MULU Unsigned Multiply MULU

Instruction Fields (Longword):

• Source Effective Address field—Specifies the source operand; use only data
addressing modes listed in the following table:

• Register field—Specifies a data register, Dx, for the destination operand; the 32-bit
multiplicand comes from this register, and the low-order 32 bits of the product are
loaded into this register.

Instruction
Format:
(Longword)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 0 Source Effective Address

Mode Register

0 Register, Dx 0 0 0 0 0 0 0 0 0 0 0 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay #<data> — —

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
Chapter 4. Integer User Instructions 4-55

MVS Move with Sign Extend MVS
(Supported starting with V4)

Operation: Source with sign extension → Destination

Assembler Syntax: MVS.sz <ea>y,Dx

Attributes: Size = byte, word

Description: Sign-extend the source operand and move to the destination register. For the
byte operation, bit 7 of the source is copied to bits 31–8 of the destination. For the word
operation, bit 15 of the source is copied to bits 31-16 of the destination.

Instruction Fields:

• Register field—Specifies the destination data register, Dx.

• Size field—Specifies the size of the operation

— 0 byte operation

— 1 word operation

• Source Effective Address field—specifies the source operand, <ea>y; use only data
addressing modes from the following table:

Condition
Codes:

X N Z V C X Not affected
N Set if result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— ∗ ∗ 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 Register, Dx 1 0 Size Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W 111 000

Ay 001 reg. number:Ay (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> 111 100

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) 111 011

MVS V2, V3 Core (ISA_A) V4 Core (ISA_B)

Opcode present No Yes

Operand sizes supported — B,W
4-56 ColdFire Family Programmer’s Reference Manual

MVZ Move with Zero-Fill MVZ
(Supported starting with V4)

Operation: Source with zero fill → Destination

Assembler Syntax: MVZ.sz <ea>y,Dx

Attributes: Size = byte, word

Description: Zero-fill the source operand and move to the destination register. For the byte
operation, the source operand is moved to bits 7–0 of the destination and bits 31–8 are filled
with zeros. For the word operation, the source operand is moved to bits 15–0 of the
destination and bits 31–16 are filled with zeros.

Instruction Fields:

• Register field—Specifies the destination data register, Dx.

• Size field—Specifies the size of the operation

— 0 byte operation

— 1 word operation

• Source Effective Address field—Specifies the source operand, <ea>y; use the
following data addressing modes:

Condition
Codes:

X N Z V C X Not affected
N Always cleared
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— 0 ∗ 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 Register, Dx 1 1 Size Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W 111 000

Ay 001 reg. number:Ay (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> 111 100

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) 111 011

MVZ V2, V3 Core V4 Core

Opcode present No Yes

Operand sizes supported — B, W
Chapter 4. Integer User Instructions 4-57

NEG Negate NEG
(All ColdFire Processors)

Operation: 0 – Destination → Destination

Assembler Syntax: NEG.L Dx

Attributes: Size = longword

Description: Subtracts the destination operand from zero and stores the result in the destination
location. The size of the operation is specified as a longword.

Instruction Fields:

• Register field - Specifies data register, Dx.

Condition
Codes:

X N Z V C X Set the same as the carry bit
N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if an overflow is generated; cleared otherwise
C Cleared if the result is zero; set otherwise

∗ ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 1 0 0 0 0 Register, Dx
4-58 ColdFire Family Programmer’s Reference Manual

NEGX Negate with Extend NEGX
(All ColdFire Processors)

Operation: 0 – Destination – CCR[X] → Destination

Assembler Syntax: NEGX.L Dx

Attributes: Size = longword

Description: Subtracts the destination operand and CCR[X] from zero. Stores the result in
the destination location. The size of the operation is specified as a longword.

Normally CCR[Z] is set explicitly via programming before the start of an NEGX operation
to allow successful testing for zero results upon completion of multiple-precision
operations.

Instruction Fields:

• Register field - Specifies data register, Dx.

Condition
Codes:

X N Z V C X Set the same as the carry bit
N Set if the result is negative; cleared otherwise
Z Cleared if the result is nonzero; unchanged otherwise
V Set if an overflow is generated; cleared otherwise
C Set if a borrow occurs; cleared otherwise

∗ ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 1 0 0 0 0 Register, Dx
Chapter 4. Integer User Instructions 4-59

NOP No Operation NOP
(All ColdFire Processors)

Operation: None

Assembler Syntax: NOP

Attributes: Unsized

Description: Performs no operation. The processor state, other than the program counter,
is unaffected. Execution continues with the instruction following the NOP instruction. The
NOP instruction does not begin execution until all pending bus cycles have completed,
synchronizing the pipeline and preventing instruction overlap.

Because the NOP instruction is specified to perform a pipeline synchronization in addition
to performing no operation, the execution time is multiple cycles. In cases where only code
alignment is desired, it is preferable to use the TPF instruction, which operates as a 1-cycle
no operation instruction. The opcode for NOP is 0x4E71.

Condition Codes: Not affected

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1
4-60 ColdFire Family Programmer’s Reference Manual

NOT Logical Complement NOT
(All ColdFire Processors)

Operation: ~ Destination → Destination

Assembler Syntax: NOT.L Dx

Attributes: Size = longword

Description: Calculates the ones complement of the destination operand and stores the
result in the destination location. The size of the operation is specified as a longword.

Instruction Fields:

• Register field — Specifies data register, Dx.

Condition
Codes:

X N Z V C X Not affected
N Set if result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— ∗ ∗ 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 0 1 0 0 0 0 Register, Dx
Chapter 4. Integer User Instructions 4-61

OR Inclusive-OR Logical OR
(All ColdFire Processors)

Operation: Source | Destination → Destination

Assembler Syntax: OR.L <ea>y,Dx
OR.L Dy,<ea>x

Attributes: Size = longword

Description: Performs an inclusive-OR operation on the source operand and the
destination operand and stores the result in the destination location. The size of the
operation is specified as a longword. The contents of an address register may not be used
as an operand.

The Dx mode is used when the destination is a data register; the destination <ea> mode is
invalid for a data register.

In addition, ORI is used when the source is immediate data.

Instruction Fields:

• Register field—Specifies the data register.

• Opmode field:

Condition
Codes:

X N Z V C X Not affected
N Set if the msb of the result is set; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— ∗ ∗ 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 Register Opmode Effective Address

Mode Register

Byte Word Longword Operation

— — 010 <ea>y | Dx → Dx

— — 110 Dy | <ea>x → <ea>x
4-62 ColdFire Family Programmer’s Reference Manual

OR Inclusive-OR Logical OR

Instruction Fields (continued):

• Effective Address field—Determines addressing mode

— For the source operand <ea>y, use addressing modes listed in the following
table:

— For the destination operand <ea>x, use addressing modes listed in the following
table:

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W 111 000

Ay — — (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> 111 100

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) 111 011

Addressing Mode Mode Register Addressing Mode Mode Register

Dx — — (xxx).W 111 000

Ax — — (xxx).L 111 001

(Ax) 010 reg. number:Ax #<data> — —

(Ax) + 011 reg. number:Ax

– (Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) 110 reg. number:Ax (d8,PC,Xi) — —
Chapter 4. Integer User Instructions 4-63

ORI Inclusive-OR ORI
(All ColdFire Processors)

Operation: Immediate Data | Destination → Destination

Assembler Syntax: ORI.L #<data>,Dx

Attributes: Size = longword

Description: Performs an inclusive-OR operation on the immediate data and the
destination operand and stores the result in the destination data register, Dx. The size of the
operation is specified as a longword. The size of the immediate data is specified as a
longword. Note that the immediate data is contained in the two extension words, with the
first extension word, bits [15:0], containing the upper word, and the second extension word,
bits [15:0], containing the lower word.

Instruction Fields:

• Destination register field - Specifies the destination data register, Dx.

Condition
Codes:

X N Z V C X Not affected
N Set if the msb of the result is set; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— ∗ ∗ 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 Register, Dx

Upper Word of Immediate Data

Lower Word of Immediate Data
4-64 ColdFire Family Programmer’s Reference Manual

PEA Push Effective Address PEA
(All ColdFire Processors)

Operation: SP – 4 → SP; <ea>y → (SP)

Assembler Syntax: PEA.L <ea>y

Attributes: Size = longword

Description: Computes the effective address and pushes it onto the stack. The effective
address is a longword address.

Condition Codes: Not affected

Instruction Field:

• Effective Address field—Specifies the address, <ea>y, to be pushed onto the stack;
use only those control addressing modes listed in the following table:

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 1 Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy — — (xxx).W 111 000

Ay — — (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> — —

(Ay) + — —

– (Ay) — —

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) 111 011
Chapter 4. Integer User Instructions 4-65

PULSE Generate Unique Processor Status PULSE
(All ColdFire Processors)

Operation: Set PST = 0x4

Assembler Syntax: PULSE

Attributes: Unsized

Description: Performs no operation. The processor state, other than the program counter,
is unaffected. However, PULSE generates a special encoding of the Processor Status (PST)
output pins, making it very useful for external triggering purposes. The opcode for PULSE
is 0x4ACC.

Condition Codes: Not affected

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0
4-66 ColdFire Family Programmer’s Reference Manual

REMS Signed Divide Remainder REMS
(All ColdFire Processors Starting with MCF5206e)

Operation: Destination/Source → Remainder

Assembler Syntax: REMS.L <ea>y,Dw:Dx 32-bit Dx/32-bit <ea>y → 32r in Dw
where r indicates the remainder

Attributes: Size = longword

Description: Divide the signed destination operand by the signed source and store the
signed remainder in another register. If Dw is specified to be the same register as Dx, the
DIVS instruction is executed rather than REMS. To determine the quotient, use DIVS.

An attempt to divide by zero results in a divide-by-zero exception and no registers are
affected. The resulting exception stack frame points to the offending REMS opcode. If
overflow is detected, the destination register is unaffected. An overflow occurs if the
quotient is larger than a 32-bit signed integer.

Instruction Fields:

• Register Dx field—Specifies the destination register, Dx.

• Source Effective Address field— Specifies the source operand, <ea>y; use
addressing modes in the following table:

• Register Dw field—Specifies the remainder register, Dw.

Condition
Codes:

X N Z V C X Not affected
N Cleared if overflow is detected; otherwise set if the

quotient is negative, cleared if positive
Z Cleared if overflow is detected; otherwise set if the

quotient is zero, cleared if nonzero
V Set if an overflow occurs; cleared otherwise
C Always cleared

— ∗ ∗ ∗ 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 1 Source Effective Address

Mode Register

0 Register Dx 1 0 0 0 0 0 0 0 0 Register Dw

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay #<data> — —

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
Chapter 4. Integer User Instructions 4-67

REMU Unsigned Divide Remainder REMU
(All ColdFire Processors Starting with MCF5206e)

Operation: Destination/Source → Remainder

Assembler Syntax: REMU.L <ea>y,Dw:Dx 32-bit Dx/32-bit <ea>y → 32r in Dw
where r indicates the remainder

Attributes: Size = longword

Description: Divide the unsigned destination operand by the unsigned source and store the
unsigned remainder in another register. If Dw is specified to be the same register as Dx, the
DIVU instruction is executed rather than REMU. To determine the quotient, use DIVU.

An attempt to divide by zero results in a divide-by-zero exception and no registers are
affected. The resulting exception stack frame points to the offending REMU opcode. If
overflow is detected, the destination register is unaffected. An overflow occurs if the
quotient is larger than a 32-bit signed integer.

Instruction Fields:

• Register Dx field—Specifies the destination register, Dx.

• Source Effective Address field— Specifies the source operand, <ea>y; use
addressing modes in the following table:

• Register Dw field—Specifies the remainder register, Dw.

Condition
Codes:

X N Z V C X Not affected
N Cleared if overflow is detected; otherwise set if the

quotient is negative, cleared if positive
Z Cleared if overflow is detected; otherwise set if the

quotient is zero, cleared if nonzero
V Set if an overflow occurs; cleared otherwise
C Always cleared

— ∗ ∗ ∗ 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 1 Source Effective Address

Mode Register

0 Register Dx 0 0 0 0 0 0 0 0 0 Register Dw

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay #<data> — —

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
4-68 ColdFire Family Programmer’s Reference Manual

RTS Return from Subroutine RTS
(All ColdFire Processors)

Operation: (SP) → PC; SP + 4 → SP

Assembler Syntax: RTS

Attributes: Unsized

Description: Pulls the program counter value from the stack. The previous program
counter value is lost. The opcode for RTS is 0x4E75.

Condition Codes: Not affected

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1
Chapter 4. Integer User Instructions 4-69

SATS Signed Saturate SATS
(Supported starting with V4)

Operation:

If CCR[V] == 1,
then if Dx[31] == 0,

then Dx[31:0] = 0x80000000
else Dx[31:0] = 0x7FFFFFFF

else Dx[31:0] is unchanged

Assembler Syntax: SATS.L Dx

Attributes: Size = longword

Description: Update the destination register only if the overflow bit of the CCR is set. If
the operand is negative, then set the result to greatest positive number; otherwise, set the
result to the largest negative value. The condition codes are set according to the result.

Instruction Fields:

• Register field—Specifies the destination data register, Dx.

Condition
Codes:

X N Z V C X Not affected
N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— ∗ ∗ 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1 0 0 0 0 Register, Dx

SATS V2, V3 Core (ISA_A) V4 Core (ISA_B)

Opcode present No Yes

Operand sizes supported — L
4-70 ColdFire Family Programmer’s Reference Manual

Scc Set According to Condition Scc
(All ColdFire Processors)

Operation: If Condition True
Then 1s → Destination

Else 0s → Destination

Assembler Syntax: Scc.B Dx

Attributes: Size = byte

Description: Tests the specified condition code; if the condition is true, sets the lowest byte
of the destination data register to TRUE (all ones). Otherwise, sets that byte to FALSE (all
zeros). Condition code cc specifies one of the following conditional tests, where C, N, V,
and Z represent CCR[C], CCR[N], CCR[V], and CCR[Z], respectively:

Condition Codes: Not affected

Instruction Fields:

• Condition field—Binary code for one of the conditions listed in the table.

• Register field —Specifies the destination data register, Dx.

Code Condition
Encod-

ing
Test Code Condition

Encod-
ing

Test

CC(HS) Carry clear 0100 C LS Lower or same 0011 C | Z

CS(LO) Carry set 0101 C LT Less than 1101 N & V | N & V

EQ Equal 0111 Z MI Minus 1011 N

F False 0001 0 NE Not equal 0110 Z

GE Greater or equal 1100 N & V | N & V PL Plus 1010 N

GT Greater than 1110 N & V & Z | N & V & Z T True 0000 1

HI High 0010 C & Z VC Overflow clear 1000 V

LE Less or equal 1111 Z | N & V | N & V VS Overflow set 1001 V

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 Condition 1 1 0 0 0 Register, Dx
Chapter 4. Integer User Instructions 4-71

SUB Subtract SUB
(All ColdFire Processors)

Operation: Destination – Source → Destination

Assembler Syntax: SUB.L <ea>y,Dx
SUB.L Dy,<ea>x

Attributes: Size = longword

Description: Subtracts the source operand from the destination operand and stores the
result in the destination. The size of the operation is specified as a longword. The mode of
the instruction indicates which operand is the source and which is the destination.

The Dx mode is used when the destination is a data register; the destination <ea> mode is
invalid for a data register.

In addition, SUBA is used when the destination is an address register. SUBI and SUBQ are
used when the source is immediate data.

Instruction Fields:

• Register field—Specifies the data register.

• Opmode field:

Condition
Codes:

X N Z V C X Set the same as the carry bit
N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if an overflow is generated; cleared otherwise
C Set if an carry is generated; cleared otherwise

∗ ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 Register Opmode Effective Address

Mode Register

Byte Word Longword Operation

— — 010 Dx - <ea>y → Dx

— — 110 <ea>x - Dy → <ea>x
4-72 ColdFire Family Programmer’s Reference Manual

SUB Subtract SUB

Instruction Fields (continued):

• Effective Address field—Determines addressing mode

— For the source operand <ea>y, use addressing modes listed in the following
table:

— For the destination operand <ea>x, use addressing modes listed in the following
table:

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W 111 000

Ay 001 reg. number:Ay (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> 111 100

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) 111 011

Addressing Mode Mode Register Addressing Mode Mode Register

Dx — — (xxx).W 111 000

Ax — — (xxx).L 111 001

(Ax) 010 reg. number:Ax #<data> — —

(Ax) + 011 reg. number:Ax

– (Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) 110 reg. number:Ax (d8,PC,Xi) — —
Chapter 4. Integer User Instructions 4-73

SUBA Subtract Address SUBA
(All ColdFire Processors)

Operation: Destination - Source → Destination

Assembler Syntax: SUBA.L <ea>y,Ax

Attributes: Size = longword

Description: Operates similarly to SUB, but is used when the destination is an address
register rather than a data register. Subtracts the source operand from the destination
address register and stores the result in the address register. The size of the operation is
specified as a longword.

Condition Codes: Not affected

Instruction Fields:

• Destination Register field—Specifies the destination address register, Ax.

• Source Effective Address field— Specifies the source operand, <ea>y; use
addressing modes listed in the following table:

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 Destination
Register Ax

1 1 1 Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W 111 000

Ay 001 reg. number:Ay (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> 111 100

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) 111 011
4-74 ColdFire Family Programmer’s Reference Manual

SUBI Subtract Immediate SUBI
(All ColdFire Processors)

Operation: Destination - Immediate Data → Destination

Assembler Syntax: SUBI.L #<data>,Dx

Attributes: Size = longword

Description: Operates similarly to SUB, but is used when the source operand is immediate
data. Subtracts the immediate data from the destination operand and stores the result in the
destination data register, Dx. The size of the operation is specified as longword. Note that
the immediate data is contained in the two extension words, with the first extension word,
bits [15:0], containing the upper word, and the second extension word, bits [15:0],
containing the lower word.

Instruction Fields:

• Destination Register field—Specifies the destination data register, Dx.

Condition
Codes:

X N Z V C X Set the same as the carry bit
N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if an overflow is generated; cleared otherwise
C Set if an carry is generated; cleared otherwise

∗ ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 0 1 0 0 0 0 Register, Dx

Upper Word of Immediate Data

Lower Word of Immediate Data
Chapter 4. Integer User Instructions 4-75

SUBQ Subtract Quick SUBQ
(All ColdFire Processors)

Operation: Destination - Immediate Data → Destination

Assembler Syntax: SUBQ.L #<data>,<ea>x

Attributes: Size = longword

Description: Operates similarly to SUB, but is used when the source operand is immediate
data ranging in value from 1 to 8. Subtracts the immediate value from the operand at the
destination location. The size of the operation is specified as longword. The immediate data
is zero-filled to a longword before being subtracted from the destination. When adding to
address registers, the condition codes are not altered.

Instruction Fields:

• Data field—3 bits of immediate data representing 8 values (0 – 7), with the
immediate values 1-7 representing values of 1-7 respectively and 0 representing a
value of 8.

• Destination Effective Address field—specifies the destination location; use only
those alterable addressing modes listed in the following table:

Condition
Codes:

X N Z V C X Set the same as the carry bit
N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if an overflow is generated; cleared otherwise
C Set if an carry is generated; cleared otherwise

∗ ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 Data 1 1 0 Destination Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dx 000 reg. number:Dx (xxx).W 111 000

Ax 001 reg. number:Ax (xxx).L 111 001

(Ax) 010 reg. number:Ax #<data> — —

(Ax) + 011 reg. number:Ax

– (Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) 110 reg. number:Ax (d8,PC,Xi) — —
4-76 ColdFire Family Programmer’s Reference Manual

SUBX Subtract Extended SUBX
(All ColdFire Processors)

Operation: Destination - Source - CCR[X] → Destination

Assembler Syntax: SUBX.L Dy,Dx

Attributes: Size = longword

Description: Subtracts the source operand and CCR[X] from the destination operand and
stores the result in the destination location. The size of the operation is specified as a
longword.

Normally CCR[Z] is set explicitly via programming before the start of an SUBX operation
to allow successful testing for zero results upon completion of multiple-precision
operations.

Instruction Fields:

• Register Dx field—Specifies the destination data register, Dx.

• Register Dy field—Specifies the source data register, Dy.

Condition
Codes:

X N Z V C X Set the same as the carry bit
N Set if the result is negative; cleared otherwise
Z Cleared if the result is non-zero; unchanged otherwise
V Set if an overflow is generated; cleared otherwise
C Set if an carry is generated; cleared otherwise

∗ ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 Register, Dx 1 1 0 0 0 0 Register, Dy
Chapter 4. Integer User Instructions 4-77

SWAP Swap Register Halves SWAP
(All ColdFire Processors)

Operation: Register[31:16] ↔ Register[15:0]

Assembler Syntax: SWAP.W Dx

Attributes: Size = Word

Description: Exchange the 16-bit words (halves) of a data register.

Instruction Fields:

• Register field—Specifies the destination data register, Dx.

Condition
Codes:

X N Z V C X Not affected
N Set if the msb of the result is set; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— ∗ ∗ 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 1 0 0 0 Register, Dx
4-78 ColdFire Family Programmer’s Reference Manual

TAS Test and Set an Operand TAS
(Supported starting with V4)

Operation: Destination Tested → CCR; 1 → bit 7 of Destination

Assembler Syntax: TAS.B <ea>x

Attributes: Size = byte

Description: Tests and sets the byte operand addressed by the effective address field. The
instruction tests the current value of the operand and sets CCR[N] and CCR[Z]
appropriately. TAS also sets the high-order bit of the operand. The operand uses a
read-modify-write memory cycle that completes the operation without interruption. This
instruction supports use of a flag or semaphore to coordinate several processors. Note that,
unlike 68K Family processors, Dx is not a supported addressing mode.

Instruction Fields:

• Destination Effective Address field—Specifies the destination location, <ea>x; the
possible data alterable addressing modes are listed in the table below.

Condition
Codes:

X N Z V C X Not affected
N Set if the msb of the operand was set; cleared

otherwise
Z Set if the operand was zero; cleared otherwise
V Always cleared
C Always cleared

— ∗ ∗ 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 1 1 Destination Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dx — — (xxx).W 111 000

Ax — — (xxx).L 111 001

(Ax) 010 reg. number:Ax #<data> — —

(Ax) + 011 reg. number:Ax

– (Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) 110 reg. number:Ax (d8,PC,Xi) — —

TAS V2, V3 Core (ISA_A) V4 Core (ISA_B)

Opcode present No Yes

Operand sizes supported — B
Chapter 4. Integer User Instructions 4-79

TPF Trap False TPF
(All ColdFire Processors)

Operation: No Operation

Assembler Syntax: TPF PC + 2 → PC
TPF.W #<data> PC + 4 → PC
TPF.L #<data> PC + 6 → PC

Attributes: Size = unsized, word, longword

Description: Performs no operation. TPF can occupy 16, 32, or 48 bits in instruction space,
effectively providing a variable-length, single-cycle, no operation instruction. When code
alignment is desired, TPF is preferred over the NOP instruction, as the NOP instruction also
synchronizes the processor pipeline, resulting in multiple-cycle operation.

TPF.{W,L} can be used for elimination of unconditional branches, for example:

if (a == b)
z = 1;
else

z = 2;

which typically compiles to:

cmp.l d0,d1 ; compare a == b
beq.b label0 ; branch if equal
movq.l #2,d2 ; z = 2
bra.b label1 ; continue

label0:
movq.l #1,d2 ; z = 1

label1:

For this type of sequence, the BRA.B instruction can be replaced with a TPF.W or TPF.L
opcode (depending on the length of the instruction at label0 - in this case, a TPF.W opcode
would be applicable). The instruction(s) at the first label effectively become packaged as
extension words of the TPF instruction, and the branch is completely eliminated.

Condition Codes: Not affected

Instruction Fields:

• Opmode field—Specifies the number of optional extension words.

— 010 one extension word

— 011 two extension words

— 100 no extension words

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 1 1 1 1 1 1 Opmode

Optional Immediate Word

Optional Immediate Word
4-80 ColdFire Family Programmer’s Reference Manual

TRAP Trap TRAP
(All ColdFire Processors)

Operation: 1 → S-Bit of SR
SP – 4 → SP; nextPC → (SP); SP – 2 → SP;
SR → (SP); SP – 2 → SP; Format/Offset → (SP);
(VBR + 0x80 + 4*n) → PC
where n is the TRAP vector number

Assembler Syntax: TRAP #<vector>

Attributes: Unsized

Description: Causes a TRAP #<vector> exception. The TRAP vector field is multiplied by
4 and then added to 0x80 to form the exception address. The exception address is then
added to the VBR to index into the exception vector table. The vector field value can be
0 – 15, providing 16 vectors.

Note when SR is copied onto the exception stack frame, it represents the value at the
beginning of the TRAP instruction's execution. At the conclusion of the exception
processing, the SR is updated to clear the T bit and set the S bit.

Note also that for processors beginning with V4 (for devices which have an MMU), the SSP
is used for this operation.

Condition Codes: Not affected

Instruction Fields:

• Vector field—Specifies the trap vector to be taken.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 0 0 Vector
Chapter 4. Integer User Instructions 4-81

TST Test an Operand TST
(All ColdFire Processors)

Operation: Source Operand Tested → CCR

Assembler Syntax: TST.sz <ea>y

Attributes: Size = byte, word, longword

Description: Compares the operand with zero and sets the condition codes according to the
results of the test. The size of the operation is specified as byte, word, or longword.

Instruction Fields:

• Size field—Specifies the size of the operation:

— 00 byte operation

— 01 word operation

— 10 longword operation

— 11 word operation

• Destination Effective Address field—Specifies the addressing mode for the
destination operand, <ea>x, as listed in the following table:

* The Ax addressing mode is allowed only for word and longword operations.

Condition
Codes:

X N Z V C X Not affected
N Set if the operand Is negative; cleared otherwise
Z Set if the operand was zero; cleared otherwise
V Always cleared
C Always cleared

— ∗ ∗ 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 Size Destination Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dx 000 reg. number:Dx (xxx).W 111 000

Ax* 001 reg. number:Ax (xxx).L 111 001

(Ax) 010 reg. number:Ax #<data> 111 100

(Ax) + 011 reg. number:Ax

– (Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) 111 010

(d8,Ax,Xi) 110 reg. number:Ax (d8,PC,Xi) 111 011
4-82 ColdFire Family Programmer’s Reference Manual

UNLK Unlink UNLK
(All ColdFire Processors)

Operation: Ax → SP; (SP) → Ax; SP + 4 → SP

Assembler Syntax: UNLK Ax

Attributes: Unsized

Description: Loads the stack pointer from the specified address register, then loads the
address register with the longword pulled from the top of the stack.

Condition Codes: Not affected

Instruction Field:

• Register field—Specifies the address register, Ax, for the instruction.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 0 1 1 Register, Ax
Chapter 4. Integer User Instructions 4-83

WDDATA Write to Debug Data WDDATA
(All ColdFire Processors)

Operation: Source → DDATA Signal Pins

Assembler Syntax: WDDATA.sz <ea>y

Attributes: Size = byte, word, longword

Description: This instruction fetches the operand defined by the effective address and
captures the data in the ColdFire debug module for display on the DDATA output pins. The
size of the operand determines the number of nibbles displayed on the DDATA output pins.
The value of the debug module configuration/status register (CSR) does not affect the
operation of this instruction.

The execution of this instruction generates a processor status encoding matching the
PULSE instruction (0x4) before the referenced operand is displayed on the DDATA
outputs.

Condition Codes: Not affected

Instruction Fields:

• Size field—specifies the size of the operand data

— 00 byte operation

— 01 word operation

— 10 longword operation

— 11 reserved

• Source Effective Address field—Determines the addressing mode for the operand,
<ea>y, to be written to the DDATA signal pins; use only those memory alterable
addressing modes listed in the following table:

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 Size Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy — — (xxx).W 111 000

Ay — — (xxx).L 111 001

(Ay) 010 reg. number:Ay #<data> — —

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) — —

(d8,Ay,Xi) 110 reg. number:Ay (d8,PC,Xi) — —
4-84 ColdFire Family Programmer’s Reference Manual

Chapter 5
Multiply-Accumulate Unit (MAC)
User Instructions
This chapter describes the user instructions for the optional multiply-accumulate (MAC)
unit in the ColdFire family of processors. A detailed discussion of each instruction
description is arranged in alphabetical order by instruction mnemonic.

For instructions implemented by the Enhanced Multiply-Accumulate Unit (EMAC), refer
to Chapter 6, “Enhanced Multiply-Accumulate Unit (EMAC) User Instructions.”
Chapter 5. Multiply-Accumulate Unit (MAC) User Instructions 5-1

MAC Multiply Accumulate MAC

Operation: ACC + (Ry * Rx){<< | >>} SF → ACC

Assembler syntax: MAC.sz Ry.{U,L},Rx.{U,L}SF

Attributes: Size = word, longword

Description: Multiply two 16- or 32-bit numbers to yield a 32-bit result, then add this
product, shifted as defined by the scale factor, to the accumulator. If 16-bit operands are
used, the upper or lower word of each register must be specified.

Instruction Fields:

• Register Rx[6,11–9] field— Specifies a source register operand, where 0x0 is D0,...,
0x7 is D7, 0x8 is A0,..., 0xF is A7. Note that bit 6 of the operation word is the msb
of the register number field.

• Register Ry[3–0] field — Specifies a source register operand, where 0x0 is D0,...,
0x7 is D7, 0x8 is A0,..., 0xF is A7.

• sz field—Specifies the size of the input operands

— 0 word

— 1 longword

• Scale Factor field —Specifies the scale factor. This field is ignored when using
fractional operands.

— 00 none

— 01 product << 1

— 10 reserved

— 11 product >> 1

Condition
Codes
(MACSR):

N Z V N Set if the msb of the result is set; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if an overflow is generated; unchanged otherwise

∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 Register, Rx 0 0 Rx 0 0 Register, Ry

— — — — sz Scale
Factor

0 U/Lx U/Ly — — — — — —
5-2 ColdFire Family Programmer’s Reference Manual

MAC Multiply Accumulate MAC

Instruction Fields (continued):

• U/Lx—Specifies which 16-bit operand of the source register, Rx, is used for a
word-sized operation.

— 0 lower word

— 1 upper word

• U/Ly—Specifies which 16-bit operand of the source register, Ry, is used for a
word-sized operation.

— 0 lower word

— 1 upper word
Chapter 5. Multiply-Accumulate Unit (MAC) User Instructions 5-3

MAC Multiply Accumulate with Load MAC

Operation: ACC + (Ry * Rx){<< | >>} SF → ACC
(<ea>y) → Rw

Assembler syntax: MAC.sz Ry.{U,L},Rx.{U,L}SF,<ea>y&,Rw
where & enables the use of the MASK

Attributes: Size = word, longword

Description: Multiply two 16- or 32-bit numbers to yield a 32-bit result, then add this
product, shifted as defined by the scale factor, to the accumulator. If 16-bit operands are
used, the upper or lower word of each register must be specified. In parallel with this
operation, a 32-bit operand is fetched from the memory location defined by <ea>y and
loaded into the destination register, Rw. If the MASK register is specified to be used, the
<ea>y operand is ANDed with MASK prior to being used by the instruction.

Instruction Fields:

• Register Rw[6,11–9] field— Specifies the destination register, Rw, where 0x0 is
D0,..., 0x7 is D7, 0x8 is A0,..., 0xF is A7. Note that bit 6 of the operation word is the
msb of the register number field.

• Source Effective Address field specifies the source operand, <ea>y; use addressing
modes in the following table:

Condition
Codes
(MACSR):

N Z V N Set if the msb of the result is set; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if an overflow is generated; unchanged otherwise

∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 Register, Rw 0 1 Rw Source Effective Address

Mode Register

Register, Rx sz Scale
Factor

0 U/Lx U/Ly Mask 0 Register, Ry

Addressing Mode Mode Register Addressing Mode Mode Register

Dy — — (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay #<data> — —

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
5-4 ColdFire Family Programmer’s Reference Manual

MAC Multiply Accumulate with Load MAC

Instruction Fields (continued):

• Register Rx field — Specifies a source register operand, where 0x0 is D0,..., 0x7 is
D7, 0x8 is A0,..., 0xF is A7.

• sz field—Specifies the size of the input operands

— 0 word

— 1 longword

• Scale Factor field —Specifies the scale factor. This field is ignored when using
fractional operands.

— 00 none

— 01 product << 1

— 10 reserved

— 11 product >> 1

• U/Lx, U/Ly—Specifies which 16-bit operand of the source register, Rx/Ry, is used
for a word-sized operation.

— 0 lower word

— 1 upper word

• Mask field — Specifies whether or not to use the MASK register in generating the
source effective address, <ea>y.

— 0 do not use MASK

— 1 use MASK

• Register Ry field — Specifies a source register operand, where 0x0 is D0,..., 0x7 is
D7, 0x8 is A0,..., 0xF is A7.
Chapter 5. Multiply-Accumulate Unit (MAC) User Instructions 5-5

MOVE MOVE
from ACC Move from from ACC

 Accumulator

Operation: Accumulator → Destination

Assembler syntax: MOVE.L ACC,Rx

Attributes: Size = longword

Description: Moves a 32-bit value from the accumulator into a general-purpose register,
Rx. When operating in fractional mode (MACSR[F/I] = 1), if MACSR[S/U] is set, the
accumulator contents are rounded to a 16-bit value and stored in the lower 16-bits of the
destination register Rx. The upper 16 bits of the destination register are zero-filled. The
value of the accumulator is not affected by this rounding operation.

MACSR: Not affected

Instruction Field:

• Register Rx field — Specifies a destination register operand, where 0x0 is D0,..., 0x7
is D7, 0x8 is A0,..., 0xF is A7.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 0 1 1 0 0 0 Register, Rx
5-6 ColdFire Family Programmer’s Reference Manual

MOVE MOVE
from MACSR Move from the from MACSR

 MACSR

Operation: MACSR → Destination

Assembler Syntax: MOVE.L MACSR,Rx

Attributes: Size = longword

Description: Moves the MACSR register contents into a general-purpose register, Rx.
Rx[31:8] are cleared.

MACSR: Not affected

Instruction Field:

• Register Rx field — Specifies a source register operand, where 0x0 is D0,..., 0x7 is
D7, 0x8 is A0,..., 0xF is A7.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 1 1 0 0 0 Register, Rx
Chapter 5. Multiply-Accumulate Unit (MAC) User Instructions 5-7

MOVE MOVE
from MASK Move from the from MASK

 MAC MASK Register

Operation: MASK → Destination

Assembler Syntax: MOVE.L MASK,Rx

Attributes: Size = longword

Description: Moves the MASK register contents into a general-purpose register, Rx.
Rx[31:16] are set to 0xFFFF.

MACSR: Not affected

Instruction Field:

• Register Rx field — Specifies a source register operand, where 0x0 is D0,..., 0x7 is
D7, 0x8 is A0,..., 0xF is A7.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 0 1 1 0 0 0 Register, Rx
5-8 ColdFire Family Programmer’s Reference Manual

MOVE MACSR MOVE MACSR
to CCR Move from the to CCR

 MACSR to the CCR

Operation: MACSR → CCR

Assembler Syntax: MOVE.L MACSR,CCR

Attributes: Size = longword

Description: Moves the MACSR condition codes into the Condition Code Register. The
opcode for MOVE MACSR to CCR is 0xA9C0.

MACSR: Not affected

Condition
Codes:

X N Z V C X Always cleared
N Set if MACSR[N]=1; cleared otherwise
Z Set if MACSR[Z]=1; cleared otherwise
V Set if MACSR[V]=1; cleared otherwise
C Always cleared

0 ∗ ∗ ∗ 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0
Chapter 5. Multiply-Accumulate Unit (MAC) User Instructions 5-9

MOVE MOVE
to ACC Move to to ACC

 Accumulator

Operation: Source → Accumulator

Assembler syntax: MOVE.L Ry,ACC
MOVE.L #<data>,ACC

Attributes: Size = longword

Description: Moves a 32-bit value from a register or an immediate operand into the
accumulator.

Instruction Fields:

• Source Effective Address field— Specifies the source operand, <ea>y; use
addressing modes listed in the following table:

Condition
Codes
(MACSR):

N Z V N Set if the msb of the result is set; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared

∗ ∗ 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 0 1 0 0 Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W — —

Ay 001 reg. number:Ay (xxx).L — —

(Ay) — — #<data> 111 100

(Ay) + — —

– (Ay) — —

(d16,Ay) — — (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
5-10 ColdFire Family Programmer’s Reference Manual

MOVE MOVE
to MACSR Move to the to MACSR

 MAC Status Register

Operation: Source → MACSR

Assembler Syntax: MOVE.L Ry,MACSR
MOVE.L #<data>,MACSR

Attributes: Size = longword

Description: Moves a 32-bit value from a register or an immediate operand into the
MACSR.

Instruction Fields:

• Source Effective Address field— Specifies the source operand; use addressing
modes listed in the following table:

MACSR: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — OMC S/U F/I R/T N Z V —

Source <ea> bit: — — — — — — — — [7] [6] [5] [4] [3] [2] [1] —

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 1 0 0 Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W — —

Ay 001 reg. number:Ay (xxx).L — —

(Ay) — — #<data> 111 100

(Ay) + — —

– (Ay) — —

(d16,Ay) — — (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
Chapter 5. Multiply-Accumulate Unit (MAC) User Instructions 5-11

MOVE MOVE
to MASK Move to the to MASK

 MAC MASK Register

Operation: Source → MASK

Assembler Syntax: MOVE.L Ry,MASK
MOVE.L #<data>,MASK

Attributes: Size = longword

Description: Moves a 16-bit value from the lower word of a register or an immediate
operand into the MASK register.

MACSR: Not affected

Instruction Fields:

• Source Effective Address field— Specifies the source operand; use addressing
modes listed in the following table:

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 0 1 0 0 Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W — —

Ay 001 reg. number:Ay (xxx).L — —

(Ay) — — #<data> 111 100

(Ay) + — —

– (Ay) — —

(d16,Ay) — — (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
5-12 ColdFire Family Programmer’s Reference Manual

MSAC Multiply Subtract MSAC

Operation: ACC - (Ry * Rx){<< | >>} SF → ACC

Assembler syntax: MSAC.sz Ry.{U,L},Rx.{U,L}SF

Attributes: Size = word, longword

Description: Multiply two 16- or 32-bit numbers to yield a 32-bit result, then subtract this
product, shifted as defined by the scale factor, from the accumulator. If 16-bit operands are
used, the upper or lower word of each register must be specified.

Instruction Fields:

• Register Rx[6,11–9] field— Specifies a source register operand, where 0x0 is D0,...,
0x7 is D7, 0x8 is A0,..., 0xF is A7. Note that bit 6 of the operation word is the msb
of the register number field.

• Register Ry[3–0] field — Specifies a source register operand, where 0x0 is D0,...,
0x7 is D7, 0x8 is A0,..., 0xF is A7.

• sz field—Specifies the size of the input operands

— 0 word

— 1 longword

• Scale Factor field —Specifies the scale factor. This field is ignored when using
fractional operands.

— 00 none

— 01 product << 1

— 10 reserved

— 11 product >> 1

Condition
Codes
(MACSR):

N Z V N Set if the msb of the result is set; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if an overflow is generated; unchanged otherwise

∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 Register, Rx 0 0 Rx 0 0 Register, Ry

— — — — sz Scale
Factor

1 U/Lx U/Ly — — — — — —
Chapter 5. Multiply-Accumulate Unit (MAC) User Instructions 5-13

MSAC Multiply Subtract MSAC

Instruction Fields (continued):

• U/Lx—Specifies which 16-bit operand of the source register, Rx, is used for a
word-sized operation.

— 0 lower word

— 1 upper word

• U/Ly—Specifies which 16-bit operand of the source register, Ry, is used for a
word-sized operation.

— 0 lower word

— 1 upper word
5-14 ColdFire Family Programmer’s Reference Manual

MSAC Multiply Subtract with Load MSAC

Operation: ACC - (Ry * Rx){<< | >>} SF → ACC
(<ea>y) → Rw

Assembler syntax: MSAC.sz Ry.{U,L},Rx.{U,L}SF,<ea>y&,Rw
where & enables the use of the MASK

Attributes: Size = word, longword

Description: Multiply two 16- or 32-bit numbers to yield a 32-bit result, then subtract this
product, shifted as defined by the scale factor, from the accumulator. If 16-bit operands are
used, the upper or lower word of each register must be specified. In parallel with this
operation, a 32-bit operand is fetched from the memory location defined by <ea>y and
loaded into the destination register, Rw. If the MASK register is specified to be used, the
<ea>y operand is ANDed with MASK prior to being used by the instruction.

Instruction Fields:

• Register Rw[6,11–9] field— Specifies the destination register, Rw, where 0x0 is
D0,..., 0x7 is D7, 0x8 is A0,..., 0xF is A7. Note that bit 6 of the operation word is the
msb of the register number field.

• Source Effective Address field specifies the source operand, <ea>y; use addressing
modes in the following table:

Condition
Codes
(MACSR):

N Z V N Set if the msb of the result is set; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if an overflow is generated; unchanged otherwise

∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 Register, Rw 0 1 Rw Source Effective Address

Mode Register

Register, Rx sz Scale
Factor

1 U/Lx U/Ly Mask 0 Register, Ry

Addressing Mode Mode Register Addressing Mode Mode Register

Dy — — (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay #<data> — —

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
Chapter 5. Multiply-Accumulate Unit (MAC) User Instructions 5-15

MSAC Multiply Subtract with Load MSAC

Instruction Fields (continued):

• Register Rx field — Specifies a source register operand, where 0x0 is D0,..., 0x7 is
D7, 0x8 is A0,..., 0xF is A7.

• sz field—Specifies the size of the input operands

— 0 word

— 1 longword

• Scale Factor field —Specifies the scale factor. This field is ignored when using
fractional operands.

— 00 none

— 01 product << 1

— 10 reserved

— 11 product >> 1

• U/Lx, U/Ly—Specifies which 16-bit operand of the source register, Rx/Ry, is used
for a word-sized operation.

— 0 lower word

— 1 upper word

• Mask field — Specifies whether or not to use the MASK register in generating the
source effective address, <ea>y.

— 0 do not use MASK

— 1 use MASK

• Register Ry field — Specifies a source register operand, where 0x0 is D0,..., 0x7 is
D7, 0x8 is A0,..., 0xF is A7.
5-16 ColdFire Family Programmer’s Reference Manual

Chapter 6
Enhanced Multiply-Accumulate Unit
(EMAC) User Instructions
This chapter describes the user instructions for the optional enhanced multiply-accumulate
(EMAC) unit in the ColdFire family of processors. A detailed discussion of each instruction
description is arranged in alphabetical order by instruction mnemonic.

For instructions implemented by the Multiply-Accumulate Unit (MAC), refer to Chapter 5,
“Multiply-Accumulate Unit (MAC) User Instructions.”
Chapter 6. EMAC User Instructions 6-1

MAC Multiply Accumulate MAC

Operation: ACCx + (Ry * Rx){<< | >>} SF → ACCx

Assembler syntax: MAC.sz Ry.{U,L},Rx.{U,L}SF,ACCx

Attributes: Size = word, longword

Description: Multiply two 16- or 32-bit numbers to yield a 40-bit result, then add this
product, shifted as defined by the scale factor, to an accumulator. If 16-bit operands are
used, the upper or lower word of each register must be specified.

Instruction Fields:

• Register Rx[6,11–9] field— Specifies a source register operand, where 0x0 is D0,...,
0x7 is D7, 0x8 is A0,..., 0xF is A7. Note that bit 6 of the operation word is the msb
of the register number field.

• ACC field—Specifies the destination accumulator, ACCx. Bit 4 of the extension
word is the msb and bit 7 of the operation word is the lsb. The value of these two bits
specify the accumulator number as shown in the following table:

• Register Ry[3–0] field — Specifies a source register operand, where 0x0 is D0,...,
0x7 is D7, 0x8 is A0,..., 0xF is A7.

Condition
Codes
(MACSR):

N Z V PAVx EV N Set if the msb of the result is set; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if a product or accumulation overflow is

generated or PAVx=1; cleared otherwise
PAVx Set if a product or accumulation overflow is

generated; unchanged otherwise
EV Set if accumulation overflows lower 32 bits in integer

mode or lower 40 bits in fractional mode; cleared
otherwise

∗ ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 Register, Rx 0 ACC
lsb

Rx
msb

0 0 Register, Ry

— — — — sz Scale
Factor

0 U/Lx U/Ly — ACC
msb

— — — —

Ext
word [4]

Op word
[7]

Accumulator

0 0 ACC0

0 1 ACC1

1 0 ACC2

1 1 ACC3
6-2 ColdFire Family Programmer’s Reference Manual

MAC Multiply Accumulate MAC

Instruction Fields (continued):

• sz field—Specifies the size of the input operands

— 0 word

— 1 longword

• Scale Factor field —Specifies the scale factor. This field is ignored when using
fractional operands.

— 00 none

— 01 product << 1

— 10 reserved

— 11 product >> 1

• U/Lx—Specifies which 16-bit operand of the source register, Rx, is used for a
word-sized operation.

— 0 lower word

— 1 upper word

• U/Ly—Specifies which 16-bit operand of the source register, Ry, is used for a
word-sized operation.

— 0 lower word

— 1 upper word
Chapter 6. EMAC User Instructions 6-3

MAC Multiply Accumulate with Load MAC

Operation: ACCx + (Ry * Rx){<< | >>} SF → ACCx
(<ea>y) → Rw

Assembler syntax: MAC.sz Ry.{U,L},Rx.{U,L}SF,<ea>y&,Rw,ACCx
where & enables the use of the MASK

Attributes: Size = word, longword

Description: Multiply two 16- or 32-bit numbers to yield a 40-bit result, then add this
product, shifted as defined by the scale factor, to an accumulator. If 16-bit operands are
used, the upper or lower word of each register must be specified. In parallel with this
operation, a 32-bit operand is fetched from the memory location defined by <ea>y and
loaded into the destination register, Rw. If the MASK register is specified to be used, the
<ea>y operand is ANDed with MASK prior to being used by the instruction.

Instruction Fields:

• Register Rw[6,11–9] field— Specifies the destination register, Rw, where 0x0 is
D0,..., 0x7 is D7, 0x8 is A0,..., 0xF is A7. Note that bit 6 of the operation word is the
msb of the register number field.

• ACC field—Specifies the destination accumulator, ACCx. Bit 4 of the extension
word is the msb and bit 7 of the operation word is the inverse of the lsb (unlike the
MAC instruction without a load). The value of these two bits specify the
accumulator number as shown in the following table:

Condition
Codes
(MACSR):

N Z V PAVx EV N Set if the msb of the result is set; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if a product or accumulation overflow is

generated or PAVx=1; cleared otherwise
PAVx Set if a product or accumulation overflow is

generated; unchanged otherwise
EV Set if accumulation overflows lower 32 bits (integer)

or lower 40 bits (fractional); cleared otherwise

∗ ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 Register, Rw 0 ACC
lsb

Rw
msb

Source Effective Address

Mode Register

Register, Rx sz Scale
Factor

0 U/Lx U/Ly Mask ACC
msb

Register, Ry

Ext word [4] Op word [7] Accumulator

0 1 ACC0

0 0 ACC1

1 1 ACC2

1 0 ACC3
6-4 ColdFire Family Programmer’s Reference Manual

MAC Multiply Accumulate with Load MAC

Instruction Fields (continued):

• Source Effective Address field specifies the source operand, <ea>y; use addressing
modes in the following table:

• Register Rx field — Specifies a source register operand, where 0x0 is D0,..., 0x7 is
D7, 0x8 is A0,..., 0xF is A7.

• sz field—Specifies the size of the input operands

— 0 word

— 1 longword

• Scale Factor field —Specifies the scale factor. This field is ignored when using
fractional operands.

— 00 none

— 01 product << 1

— 10 reserved

— 11 product >> 1

• U/Lx, U/Ly—Specifies which 16-bit operand of the source register, Rx/Ry, is used
for a word-sized operation.

— 0 lower word

— 1 upper word

• Mask field — Specifies whether or not to use the MASK register in generating the
source effective address, <ea>y.

— 0 do not use MASK

— 1 use MASK

• Register Ry field — Specifies a source register operand, where 0x0 is D0,..., 0x7 is
D7, 0x8 is A0,..., 0xF is A7.

Addressing Mode Mode Register Addressing Mode Mode Register

Dy — — (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay #<data> — —

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
Chapter 6. EMAC User Instructions 6-5

MOVCLR MOVCLR
Move from

 Accumulator and Clear

Operation: Accumulator → Destination; 0 → Accumulator

Assembler syntax: MOVCLR.L ACCy,Rx

Attributes: Size = longword

Description: Moves a 32-bit accumulator value into a general-purpose register, Rx. The
selected accumulator is cleared after the store to the Rx register is complete. This clearing
operation also affects the accumulator extension bytes and the product/accumulation
overflow indicator. The store accumulator function is quite complex, and a function of the
EMAC configuration defined by the MACSR. The following pseudocode defines its
operation; in this description, ACC[47:0] represents the concatenation of the 32-bit
accumulator and the 16-bit extension word.

if MACSR[S/U,F/I] == 00 /* signed integer mode
if MACSR[OMC] == 0

then ACC[31:0] → Rx /* saturation disabled
else if ACC[47:31] == 0x0000_0 or 0xFFFF_1

then ACC[31:0] → Rx
else if ACC[47] == 0

then 0x7FFF_FFFF → Rx
else 0x8000_0000 → Rx

if MACSR[S/U,F/I] == 10 /* unsigned integer mode
if MACSR[OMC] == 0

then ACC[31:0] → Rx /* saturation disabled
else if ACC[47:32] == 0x0000

then ACC[31:0] → Rx
else 0xFFFF_FFFF → Rx

if MACSR[F/I] == 1 /* signed fractional mode
if MACSR[OMC,S/U,R/T] == 000 /* no saturation, no 16-bit rnd, no 32-bit rnd

then ACC[39:8] → Rx
if MACSR[OMC,S/U,R/T] == 001 /* no saturation, no 16-bit rnd, 32-bit rnd

then ACC[39:8] rounded by contents of [7:0] → Rx
if MACSR[OMC,S/U] == 01 /* no saturation, 16-bit rounding

then 0 → Rx[31:16]
ACC[39:24] rounded by contents of [23:0] → Rx[15:0]

if MACSR[OMC,S/U,R/T] == 100 /* saturation, no 16-bit rnd, no 32-bit rnd
if ACC[47:39] == 0x00_0 or 0xFF_1

then ACC[39:8] → Rx
else if ACC[47] == 0

then 0x7FFF_FFFF → Rx
else 0x8000_0000 → Rx

if MACSR[OMC,S/U,R/T] == 101 /* saturation, no 16-bit rnd, 32-bit rounding
Temp[47:8] = ACC[47:8] rounded by contents of [7:0]
if Temp[47:39] == 0x00_0 or 0xFF_1

then Temp[39:8] → Rx
else if Temp[47] == 0

then 0x7FFF_FFFF → Rx
else 0x8000_0000 → Rx
6-6 ColdFire Family Programmer’s Reference Manual

MOVCLR MOVCLR
Move from

 Accumulator and Clear

if MACSR[OMC,S/U] == 11/* saturation, 16-bit rounding
Temp[47:24] = ACC[47:24] rounded by the contents of [23:0]
if Temp[47:39] == 0x00_0 or 0xFF_1

then 0 → Rx[31:16]
Temp[39:24] → Rx[15:0]

else if Temp[47] == 0
then 0x0000_7FFF → Rx
else 0x0000_8000 → Rx

0 → ACCx, ACCextx, MACSR[PAVx]

Instruction Fields:

• ACC—Specifies the destination accumulator. The value of bits [10:9] specify the
accumulator number.

• Register Rx field — Specifies a destination register operand, where 0x0 is D0,..., 0x7
is D7, 0x8 is A0,..., 0xF is A7.

Condition
Codes
(MACSR):

N Z V PAVx EV N Not affected
Z Not affected
V Not affected
PAVx Cleared
EV Not affected

— — — 0 —

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 ACC 1 1 1 0 0 Register, Rx
Chapter 6. EMAC User Instructions 6-7

MOVE MOVE
from ACC Move from from ACC

 Accumulator

Operation: Accumulator → Destination

Assembler syntax: MOVE.L ACCy,Rx

Attributes: Size = longword

Description: Moves a 32-bit value from an accumulator into a general-purpose register,
Rx.

The store accumulator function is quite complex, and a function of the EMAC
configuration defined by the MACSR. The following pseudocode defines its operation; in
this description, ACC[47:0] represents the concatenation of the 32-bit accumulator and the
16-bit extension word.

if MACSR[S/U,F/I] == 00 /* signed integer mode
if MACSR[OMC] == 0

then ACC[31:0] → Rx /* saturation disabled
else if ACC[47:31] == 0x0000_0 or 0xFFFF_1

then ACC[31:0] → Rx
else if ACC[47] == 0

then 0x7FFF_FFFF → Rx
else 0x8000_0000 → Rx

if MACSR[S/U,F/I] == 10 /* unsigned integer mode
if MACSR[OMC] == 0

then ACC[31:0] → Rx /* saturation disabled
else if ACC[47:32] == 0x0000

then ACC[31:0] → Rx
else 0xFFFF_FFFF → Rx

if MACSR[F/I] == 1 /* signed fractional mode
if MACSR[OMC,S/U,R/T] == 000 /* no saturation, no 16-bit rnd, no 32-bit rnd

then ACC[39:8] → Rx
if MACSR[OMC,S/U,R/T] == 001 /* no saturation, no 16-bit rnd, 32-bit rnd

then ACC[39:8] rounded by contents of [7:0] → Rx
if MACSR[OMC,S/U] == 01 /* no saturation, 16-bit rounding

then 0 → Rx[31:16]
ACC[39:24] rounded by contents of [23:0] → Rx[15:0]

if MACSR[OMC,S/U,R/T] == 100 /* saturation, no 16-bit rnd, no 32-bit rnd
if ACC[47:39] == 0x00_0 or 0xFF_1

then ACC[39:8] → Rx
else if ACC[47] == 0

then 0x7FFF_FFFF → Rx
else 0x8000_0000 → Rx

if MACSR[OMC,S/U,R/T] == 101 /* saturation, no 16-bit rnd, 32-bit rounding
Temp[47:8] = ACC[47:8] rounded by contents of [7:0]
if Temp[47:39] == 0x00_0 or 0xFF_1

then Temp[39:8] → Rx
else if Temp[47] == 0

then 0x7FFF_FFFF → Rx
else 0x8000_0000 → Rx
6-8 ColdFire Family Programmer’s Reference Manual

MOVE MOVE
from ACC Move from an from ACC

 Accumulator

if MACSR[OMC,S/U] == 11/* saturation, 16-bit rounding
Temp[47:24] = ACC[47:24] rounded by the contents of [23:0]
if Temp[47:39] == 0x00_0 or 0xFF_1

then 0 → Rx[31:16]
Temp[39:24] → Rx[15:0]

else if Temp[47] == 0
then 0x0000_7FFF → Rx
else 0x0000_8000 → Rx

0 → ACCx, ACCextx, MACSR[PAVx]

Instruction Fields:

• ACC—Specifies the destination accumulator. The value of bits [10:9] specify the
accumulator number.

• Register Rx field — Specifies a destination register operand, where 0x0 is D0,..., 0x7
is D7, 0x8 is A0,..., 0xF is A7.

Condition
Codes
(MACSR):

N Z V PAVx EV N Not affected
Z Not affected
V Not affected
PAVx Not affected
EV Not affected

— — — — —

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 ACC 1 1 0 0 0 Register, Rx
Chapter 6. EMAC User Instructions 6-9

MOVE from MOVE from
ACCext01 Move from Accumulator ACCext01

 0 and 1 Extensions

Operation: Accumulator 0 and 1 extension words → Destination

Assembler syntax: MOVE.L ACCext01,Rx

Attributes: Size = longword

Description: Moves the contents of the four extension bytes associated with accumulators
0 and 1 into a general-purpose register. The accumulator extension bytes are stored as
shown in the following table. Note the position of the LSB of the extension within the
combined 48-bit accumulation logic is dependent on the operating mode of the EMAC
(integer versus fractional).

MACSR: Not affected

Instruction Field:

• Register Rx field — Specifies a source register operand, where 0x0 is D0,..., 0x7 is
D7, 0x8 is A0,..., 0xF is A7.

Accumulator Extension
Byte

Destination
Data Bits

ACCext1[15:8] [31:24]

ACCext1[7:0] [23:16]

ACCext0[15:8] [15:8]

ACCext0[7:0] [7:0]

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 1 1 1 0 0 0 Register, Rx
6-10 ColdFire Family Programmer’s Reference Manual

MOVE from MOVE from
ACCext23 Move from Accumulator ACCext23

 2 and 3 Extensions

Operation: Accumulator 2 and 3 extension words → Destination

Assembler syntax: MOVE.L ACCext23,Rx

Attributes: Size = longword

Description: Moves the contents of the four extension bytes associated with accumulators
2 and 3 into a general-purpose register. The accumulator extension bytes are stored as
shown in the following table. Note the position of the LSB of the extension within the
combined 48-bit accumulation logic is dependent on the operating mode of the EMAC
(integer versus fractional).

MACSR: Not affected

Instruction Field:

• Register Rx field — Specifies a source register operand, where 0x0 is D0,..., 0x7 is
D7, 0x8 is A0,..., 0xF is A7.

Accumulator Extension
Byte

Destination
Data Bits

ACCext3[15:8] [31:24]

ACCext3[7:0] [23:16]

ACCext2[15:8] [15:8]

ACCext2[7:0] [7:0]

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 1 1 1 0 0 0 Register, Rx
Chapter 6. EMAC User Instructions 6-11

MOVE MOVE
from MACSR Move from the from MACSR

 MACSR

Operation: MACSR → Destination

Assembler Syntax: MOVE.L MACSR,Rx

Attributes: Size = longword

Description: Moves the MACSR register contents into a general-purpose register, Rx.
Rx[31:12] are cleared.

MACSR: Not affected

Instruction Field:

• Register Rx field — Specifies a source register operand, where 0x0 is D0,..., 0x7 is
D7, 0x8 is A0,..., 0xF is A7.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 1 1 0 0 0 Register, Rx
6-12 ColdFire Family Programmer’s Reference Manual

MOVE MOVE
from MASK Move from the from MASK

 MAC MASK Register

Operation: MASK → Destination

Assembler Syntax: MOVE.L MASK,Rx

Attributes: Size = longword

Description: Moves the MASK register contents into a general-purpose register, Rx.
Rx[31:16] are set to 0xFFFF.

MACSR: Not affected

Instruction Field:

• Register Rx field — Specifies a source register operand, where 0x0 is D0,..., 0x7 is
D7, 0x8 is A0,..., 0xF is A7.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 0 1 1 0 0 0 Register, Rx
Chapter 6. EMAC User Instructions 6-13

MOVE MOVE
ACC to ACC Copy an ACC to ACC

 Accumulator
Operation: Source Accumulator → Destination Accumulator

Assembler syntax: MOVE.L ACCy,ACCx

Attributes: Size = longword

Description: Moves the 48-bit source accumulator contents and its associated PAV flag
into the destination accumulator. This operation is fully pipelined within the EMAC so no
pipeline stalls are associated with it. This instruction provides better performance than the
two-step process of moving an accumulator to a general-purpose register Rn, then moving
Rn into the destination accumulator.

Instruction Fields:

• ACCx—Specifies the destination accumulator. The value of bits [10:9] specify the
accumulator number.

• ACCy—Specifies the source accumulator. The value of bits [1:0] specify the
accumulator number.

Condition
Codes
(MACSR):

N Z V PAVx EV N Set if the msb of the result is set; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if PAVy=1; cleared otherwise
PAVx Set to the value of the source PAVy flag
EV Set if the source accumulator overflows lower 32 bits

in integer mode or lower 40 bits in fractional mode;
cleared otherwise

∗ ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 ACCx 1 0 0 0 1 0 0 ACCy
6-14 ColdFire Family Programmer’s Reference Manual

MOVE MACSR MOVE MACSR
to CCR Move from the to CCR

 MACSR to the CCR

Operation: MACSR → CCR

Assembler Syntax: MOVE.L MACSR,CCR

Attributes: Size = longword

Description: Moves the MACSR condition codes into the Condition Code Register. The
opcode for MOVE MACSR to CCR is 0xA9C0.

MACSR: Not affected

Condition
Codes:

X N Z V C X Always cleared
N Set if MACSR[N]=1; cleared otherwise
Z Set if MACSR[Z]=1; cleared otherwise
V Set if MACSR[V]=1; cleared otherwise
C Set if MACSR[EV]=1; cleared otherwise

0 ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0
Chapter 6. EMAC User Instructions 6-15

MOVE MOVE
to ACC Move to to ACC

 Accumulator

Operation: Source → Accumulator

Assembler syntax: MOVE.L Ry,ACCx
MOVE.L #<data>,ACCx

Attributes: Size = longword

Description: Moves a 32-bit value from a register or an immediate operand into an
accumulator. If the EMAC is operating in signed integer mode (MACSR[6:5] = 00), the
16-bit accumulator extension is loaded with the sign-extension of bit 31 of the source
operand, while operation in unsigned integer mode (MACSR[6:5] = 10) clears the entire
16-bit field. If operating in fractional mode (MACSR[5] = 1, the upper 8 bits of the
accumulator extension are loaded with the sign-extension of bit 31 of the source operand,
while the low-order 8-bits of the extension are cleared. The appropriate
product/accumulation overflow bit is cleared.

Instruction Fields:

• ACC—Specifies the destination accumulator. The value of bits [10:9] specify the
accumulator number.

• Source Effective Address field— Specifies the source operand, <ea>y; use
addressing modes listed in the following table:

Condition
Codes
(MACSR):

N Z V PAVx EV N Set if the msb of the result is set; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
PAVx Always cleared
EV Always cleared

∗ ∗ 0 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 ACC 1 0 0 Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W — —

Ay 001 reg. number:Ay (xxx).L — —

(Ay) — — #<data> 111 100

(Ay) + — —

– (Ay) — —

(d16,Ay) — — (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
6-16 ColdFire Family Programmer’s Reference Manual

MOVE MOVE
to ACCext01 Move to Accumulator to ACCext01

 0 and 1 Extensions

Operation: Source → Accumulator 0 and 1 extension words

Assembler syntax: MOVE.L Ry,ACCext01
MOVE.L #<data>,ACCext01

Attributes: Size = longword

Description: Moves a 32-bit value from a register or an immediate operand into the four
extension bytes associated with accumulators 0 and 1. The accumulator extension bytes are
loaded as shown in the following table. Note the position of the LSB of the extension within
the combined 48-bit accumulation logic is dependent on the operating mode of the EMAC
(integer versus fractional).

MACSR: Not affected

Instruction Fields:

• Source Effective Address field— Specifies the source operand; use addressing
modes listed in the following table:

Source Data
Bits

Accumulator Extension
Affected

[31:24] ACCext1[15:8]

[23:16] ACCext1[7:0]

[15:8] ACCext0[15:8]

[7:0] ACCext0[7:0]

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 1 1 0 0 Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W — —

Ay 001 reg. number:Ay (xxx).L — —

(Ay) — — #<data> 111 100

(Ay) + — —

– (Ay) — —

(d16,Ay) — — (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
Chapter 6. EMAC User Instructions 6-17

MOVE MOVE
to ACCext23 Move to Accumulator to ACCext23

 2 and 3 Extensions

Operation: Source → Accumulator 2 and 3 extension words

Assembler syntax: MOVE.L Ry,ACCext23
MOVE.L #<data>,ACCext23

Attributes: Size = longword

Description: Moves a 32-bit value from a register or an immediate operand into the four
extension bytes associated with accumulators 2 and 3. The accumulator extension bytes are
loaded as shown in the following table. Note the position of the LSB of the extension within
the combined 48-bit accumulation logic is dependent on the operating mode of the EMAC
(integer versus fractional).

MACSR: Not affected

Instruction Fields:

• Source Effective Address field— Specifies the source operand; use addressing
modes listed in the following table:

Source Data
Bits

Accumulator Extension
Affected

[31:24] ACCext3[15:8]

[23:16] ACCext3[7:0]

[15:8] ACCext2[15:8]

[7:0] ACCext2[7:0]

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 1 1 0 0 Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W — —

Ay 001 reg. number:Ay (xxx).L — —

(Ay) — — #<data> 111 100

(Ay) + — —

– (Ay) — —

(d16,Ay) — — (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
6-18 ColdFire Family Programmer’s Reference Manual

MOVE MOVE
to MACSR Move to the to MACSR

 MAC Status Register

Operation: Source → MACSR

Assembler Syntax: MOVE.L Ry,MACSR
MOVE.L #<data>,MACSR

Attributes: Size = longword

Description: Moves a 32-bit value from a register or an immediate operand into the
MACSR.

Instruction Fields:

• Source Effective Address field— Specifies the source operand; use addressing
modes listed in the following table:

MACSR: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — PAV3 PAV2 PAV1 PAV0 OMC S/U F/I R/T N Z V EV

Source <ea> bit: — — — — [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 1 0 0 Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W — —

Ay 001 reg. number:Ay (xxx).L — —

(Ay) — — #<data> 111 100

(Ay) + — —

– (Ay) — —

(d16,Ay) — — (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
Chapter 6. EMAC User Instructions 6-19

MOVE MOVE
to MASK Move to the to MASK

 MAC MASK Register

Operation: Source → MASK

Assembler Syntax: MOVE.L Ry,MASK
MOVE.L #<data>,MASK

Attributes: Size = longword

Description: Moves a 16-bit value from the lower word of a register or an immediate
operand into the MASK register.

MACSR: Not affected

Instruction Fields:

• Source Effective Address field— Specifies the source operand; use addressing
modes listed in the following table:

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 0 1 0 0 Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W — —

Ay 001 reg. number:Ay (xxx).L — —

(Ay) — — #<data> 111 100

(Ay) + — —

– (Ay) — —

(d16,Ay) — — (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
6-20 ColdFire Family Programmer’s Reference Manual

MSAC Multiply Subtract MSAC

Operation: ACCx - (Ry * Rx){<< | >>} SF → ACCx

Assembler syntax: MSAC.sz Ry.{U,L},Rx.{U,L}SF,ACCx

Attributes: Size = word, longword

Description: Multiply two 16- or 32-bit numbers to yield a 40-bit result, then subtract this
product, shifted as defined by the scale factor, from an accumulator. If 16-bit operands are
used, the upper or lower word of each register must be specified.

Instruction Fields:

• Register Rx[6,11–9] field— Specifies a source register operand, where 0x0 is D0,...,
0x7 is D7, 0x8 is A0,..., 0xF is A7. Note that bit 6 of the operation word is the msb
of the register number field.

• ACC field—Specifies the destination accumulator, ACCx. Bit 4 of the extension
word is the msb and bit 7 of the operation word is the lsb. The value of these two bits
specify the accumulator number as shown in the following table.

• Register Ry[3–0] field — Specifies a source register operand, where 0x0 is D0,...,
0x7 is D7, 0x8 is A0,..., 0xF is A7.

Condition
Codes
(MACSR):

N Z V PAVx EV N Set if the msb of the result is set; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if a product or accumulation overflow is

generated or PAVx=1; cleared otherwise
PAVx Set if a product or accumulation overflow is

generated; unchanged otherwise
EV Set if accumulation overflows lower 32 bits in integer

mode or lower 40 bits in fractional mode; cleared
otherwise

∗ ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 Register, Rx 0 ACC
lsb

Rx
msb

0 0 Register, Ry

— — — — sz Scale
Factor

1 U/Lx U/Ly — ACC
msb

— — — —

Ext
word [4]

Op word
[7]

Accumulator

0 0 ACC0

0 1 ACC1

1 0 ACC2

1 1 ACC3
Chapter 6. EMAC User Instructions 6-21

MSAC Multiply Subtract MSAC

Instruction Fields (continued):

• sz field—Specifies the size of the input operands

— 0 word

— 1 longword

• Scale Factor field —Specifies the scale factor. This field is ignored when using
fractional operands.

— 00 none

— 01 product << 1

— 10 reserved

— 11 product >> 1

• U/Lx—Specifies which 16-bit operand of the source register, Rx, is used for a
word-sized operation.

— 0 lower word

— 1 upper word

• U/Ly—Specifies which 16-bit operand of the source register, Ry, is used for a
word-sized operation.

— 0 lower word

— 1 upper word
6-22 ColdFire Family Programmer’s Reference Manual

MSAC Multiply Subtract with Load MSAC

Operation: ACCx - (Ry * Rx){<< | >>} SF → ACCx
(<ea>y) → Rw

Assembler syntax: MAC.sz Ry.{U,L},Rx.{U,L}SF,<ea>y&,Rw,ACCx
where & enables the use of the MASK

Attributes: Size = word, longword

Description: Multiply two 16- or 32-bit numbers to yield a 40-bit result, then subtract this
product, shifted as defined by the scale factor, from an accumulator. If 16-bit operands are
used, the upper or lower word of each register must be specified. In parallel with this
operation, a 32-bit operand is fetched from the memory location defined by <ea>y and
loaded into the destination register, Rw. If the MASK register is specified to be used, the
<ea>y operand is ANDed with MASK prior to being used by the instruction.

Instruction Fields:

• Register Rw[6,11–9] field— Specifies the destination register, Rw, where 0x0 is
D0,..., 0x7 is D7, 0x8 is A0,..., 0xF is A7. Note that bit 6 of the operation word is the
msb of the register number field.

• ACC field—Specifies the destination accumulator, ACCx. Bit 4 of the extension
word is the msb and bit 7 of the operation word is the inverse of the lsb (unlike the
MSAC without load). The value of these two bits specify the accumulator number
as shown in the following table:

Condition
Codes
(MACSR):

N Z V PAVx EV N Set if the msb of the result is set; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if a product or accumulation overflow is

generated or PAVx=1; cleared otherwise
PAVx Set if a product or accumulation overflow is

generated; unchanged otherwise
EV Set if accumulation overflows lower 32 bits (integer)

or lower 40 bits (fractional); cleared otherwise

∗ ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 Register, Rw 0 ACC
lsb

Rw
msb

Source Effective Address

Mode Register

Register, Rx sz Scale
Factor

1 U/Lx U/Ly Mask ACC
msb

Register, Ry

Ext word [4] Op word [7] Accumulator

0 1 ACC0

0 0 ACC1

1 1 ACC2

1 0 ACC3
Chapter 6. EMAC User Instructions 6-23

MSAC Multiply Subtract with Load MSAC

Instruction Fields (continued):

• Source Effective Address field specifies the source operand, <ea>y; use addressing
modes in the following table:

• Register Rx field — Specifies a source register operand, where 0x0 is D0,..., 0x7 is
D7, 0x8 is A0,..., 0xF is A7.

• sz field—Specifies the size of the input operands

— 0 word

— 1 longword

• Scale Factor field —Specifies the scale factor. This field is ignored when using
fractional operands.

— 00 none

— 01 product << 1

— 10 reserved

— 11 product >> 1

• U/Lx, U/Ly—Specifies which 16-bit operand of the source register, Rx/Ry, is used
for a word-sized operation.

— 0 lower word

— 1 upper word

• Mask field — Specifies whether or not to use the MASK register in generating the
source effective address, <ea>y.

— 0 do not use MASK

— 1 use MASK

• Register Ry field — Specifies a source register operand, where 0x0 is D0,..., 0x7 is
D7, 0x8 is A0,..., 0xF is A7.

Addressing Mode Mode Register Addressing Mode Mode Register

Dy — — (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay #<data> — —

(Ay) + 011 reg. number:Ay

– (Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
6-24 ColdFire Family Programmer’s Reference Manual

Floating-Point Status Register (FPSR)
Chapter 7
Floating-Point Unit (FPU)
User Instructions
This chapter contains the instruction descriptions implemented in the optional
floating-point unit (FPU). Common information on the effects on the floating-point status
register (FPSR) and conditional testing has been consolidated in the front of the chapter.

7.1 Floating-Point Status Register (FPSR)
The FPSR, Figure 7-1, contains a floating-point condition code byte (FPCC), a
floating-point exception status byte (EXC), and a floating-point accrued exception byte
(AEXC). The user can read or write all FPSR bits. Execution of most floating-point
instructions modifies FPSR.

Figure 7-1. Floating-Point Status Register (FPSR)

Table 7-1 describes FPSR fields.

31 28 27 26 25 24 23 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

— N Z I NAN — BSUN INAN OPERR OVFL UNFL DZ INEX IDE IOP OVFL UNFL DZ INEX —

Table 7-1. FPSR Field Descriptions

Bits Field Description

31–24 FPCC Floating-point condition code byte. Contains four condition code bits that are set after completion
of all arithmetic instructions involving the floating-point data registers. The floating-point store
operation, FMOVEM, and move system control register instructions do not affect the FPCC.

31–28 Reserved, should be cleared.

27 N Negative

26 Z Zero

25 I Infinity

24 NAN Not-a-number

23–16 — Reserved, should be cleared.

FPCC Exception Status Byte (EXC) AEXC Byte
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-1

Floating-Point Status Register (FPSR)
For AEXC[OVFL], AEXC[DZ], and AEXC[INEX], the next value is determined by ORing
the current AEXC value with the EXC equivalent, as shown in the following:

• Next AEXC[OVFL] = Current AEXC[OVFL] | EXC[OVFL]

• Next AEXC[DZ] = Current AEXC[DZ] | EXC[DZ]

• Next AEXC[INEX] = Current AEXC[INEX] | EXC[INEX]

For AEXC[IOP] and AEXC[UNFL], the next value is calculated by ORing the current
AEXC value with EXC bit combinations, as follows:

• Next AEXC[IOP] = Current AEXC[IOP] | EXC[BSUN | INAN | OPERR]

• Next AEXC[UNFL] = Current AEXC[UNFL] | EXC[UNFL & INEX]

Table 7-2 shows how the FPSR EXC bits are affected by instruction execution.

15–8 EXC Exception status byte. Contains a bit for each floating-point exception that might have occurred
during the most recent arithmetic instruction or move operation.

15 BSUN Branch/set on unordered

14 INAN Input not-a-number

13 OPERR Operand error

12 OVFL Overflow

11 UNFL Underflow

10 DZ Divide by zero

9 INEX Inexact result

8 IDE Input is denormalized

7–0 AEXC Accrued exception byte. At the end of arithmetic operations, EXC bits are logically combined to
form an AEXC value that is logically ORed into the existing AEXC byte (FBcc only updates IOP).
This operation creates sticky floating-point exception bits in AEXC that the user can poll only at
the end of a series of floating-point operations. A sticky bit is one that remains set until the user
clears it.

7 IOP Invalid operation

6 OVFL Overflow

5 UNFL Underflow

4 DZ Divide by zero

3 INEX Inexact result

2–0 — Reserved, should be cleared.

Table 7-1. FPSR Field Descriptions (Continued)

Bits Field Description
7-2 ColdFire Family Programmer’s Reference Manual

Conditional Testing
7.2 Conditional Testing
Unlike operation-dependent integer condition codes, an instruction either always sets
FPCC bits in the same way or does not change them at all. Therefore, instruction
descriptions do not include FPCC settings. This section describes how FPCC bits are set.

FPCC bits differ slightly from integer condition codes. An FPU operation’s final result sets
or clears FPCC bits accordingly, independent of the operation itself. Integer condition
codes bits CCR[N] and CCR[Z] have this characteristic, but CCR[V] and CCR[C] are set
differently for different instructions. Table 7-3 lists FPCC settings for each data type.
Loading FPCC with another combination and executing a conditional instruction can
produce an unexpected branch condition.

Table 7-2. FPSR EXC Bits

EXC Bit Description

BSUN Branch/set on unordered. Set on FBcc if the NAN bit is set and the condition selected
is an IEEE nonaware test; cleared otherwise.

INAN Input not-a-number. Set if either input operand is a NAN; cleared otherwise.

IDE Input denormalized number. Set if either input operand is a denormalized number;
cleared otherwise.

OPERR Operand error. Set under the following conditions:
FADD [(+∞) + (-∞)] or [(-∞) + (+∞)]
FDIV (0 ÷ 0) or (∞ ÷ ∞)
FMOVE OUT (to B,W,L) Integer overflow, source is NAN or ±∞
FMUL Source is < 0 or -∞
FSQRT One operand is 0 and the other is ±∞
FSUB [(+∞) - (+∞)] or [(-∞) - (-∞)]

Cleared otherwise.

OVFL Overflow. Set during arithmetic operations if the destination is a floating-point data
register or memory when the intermediate result’s exponent is greater than or equal
to the maximum exponent value of the selected rounding precision. Cleared
otherwise. Overflow occurs only when the destination is S- or D-precision format;
overflows for other formats are handled as operand errors.

UNFL Underflow. Set if the intermediate result of an arithmetic instruction is too small to be
represented as a normalized number in a floating-point register or memory using the
selected rounding precision, that is, when the intermediate result exponent is less
than or equal to the minimum exponent value of the selected rounding precision.
Cleared otherwise. Underflow can only occur when the destination format is single or
double precision. When the destination is byte, word, or longword, the conversion
underflows to zero without causing an underflow or an operand error.

DZ Set if a FDIV instruction is attempted with a zero divisor; cleared otherwise.

INEX Set under the following conditions:
• If the infinitely-precise mantissa of a floating-point intermediate result has more
significant bits than can be represented exactly in the selected rounding precision or
in the destination format
• If an input operand is a denormalized number and the input denorm exception
(IDE) is disabled
• An overflowed result
• An underflowed result with the underflow exception disabled
Cleared otherwise.
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-3

Conditional Testing
The inclusion of the NAN data type in the IEEE floating-point number system requires each
conditional test to include FPCC[NAN] in its boolean equation. Because it cannot be
determined whether a NAN is bigger or smaller than an in-range number (that is, it is
unordered), the compare instruction sets FPCC[NAN] when an unordered compare is
attempted. All arithmetic instructions that result in a NAN also set the NAN bit. Conditional
instructions interpret NAN being set as the unordered condition.

The IEEE-754 standard defines the following four conditions:

• Equal to (EQ)

• Greater than (GT)

• Less than (LT)

• Unordered (UN)

The standard requires only the generation of the condition codes as a result of a
floating-point compare operation. The FPU can test for these conditions and 28 others at
the end of any operation affecting condition codes. For floating-point conditional branch
instructions, the processor logically combines the 4 bits of the FPCC condition codes to
form 32 conditional tests, 16 of which cause an exception if an unordered condition is
present when the conditional test is attempted (IEEE nonaware tests). The other 16 do not
cause an exception (IEEE-aware tests). The set of IEEE nonaware tests is best used in one
of the following cases:

• When porting a program from a system that does not support the IEEE standard to
a conforming system

• When generating high-level language code that does not support IEEE floating-point
concepts (that is, the unordered condition).

An unordered condition occurs when one or both of the operands in a floating-point
compare operation is a NAN. The inclusion of the unordered condition in floating-point
branches destroys the familiar trichotomy relationship (greater than, equal, less than) that
exists for integers. For example, the opposite of floating-point branch greater than (FBGT)

Table 7-3. FPCC Encodings

Data Type N Z I NAN

+ Normalized or Denormalized 0 0 0 0

– Normalized or Denormalized 1 0 0 0

+ 0 0 1 0 0

– 0 1 1 0 0

+ Infinity 0 0 1 0

– Infinity 1 0 1 0

+ NAN 0 0 0 1

– NAN 1 0 0 1
7-4 ColdFire Family Programmer’s Reference Manual

Conditional Testing
is not floating-point branch less than or equal (FBLE). Rather, the opposite condition is
floating-point branch not greater than (FBNGT). If the result of the previous instruction was
unordered, FBNGT is true; whereas, both FBGT and FBLE would be false because
unordered fails both of these tests (and sets BSUN). Because it is common for compilers to
invert the sense of conditions, compiler code generators should be particularly careful of
the lack of trichotomy in the floating-point branches.

When using the IEEE nonaware tests, the user receives a BSUN exception if a branch is
attempted and FPCC[NAN] is set, unless the branch is an FBEQ or an FBNE. If the BSUN
exception is enabled in FPCR, the exception takes a BSUN trap. Therefore, the IEEE
nonaware program is interrupted if an unexpected condition occurs. Users knowledgeable
of the IEEE-754 standard should use IEEE-aware tests in programs that contain ordered
and unordered conditions. Because the ordered or unordered attribute is explicitly included
in the conditional test, EXC[BSUN] is not set when the unordered condition occurs.
Table 7-4 summarizes conditional mnemonics, definitions, equations, predicates, and
whether EXC[BSUN] is set for the 32 floating-point conditional tests. The equation column
lists FPCC bit combinations for each test in the form of an equation. Condition codes with
an overbar indicate cleared bits; all other bits are set.

Table 7-4. Floating-Point Conditional Tests

Mnemonic Definition Equation Predicate 1 EXC[BSUN] Set

IEEE Nonaware Tests

EQ Equal Z 000001 No

NE Not equal Z 001110 No

GT Greater than NAN | Z | N 010010 Yes

NGT Not greater than NAN | Z | N 011101 Yes

GE Greater than or equal Z | (NAN | N) 010011 Yes

NGE Not greater than or equal NAN | (N & Z) 011100 Yes

LT Less than N & (NAN | Z) 010100 Yes

NLT Not less than NAN | (Z | N) 011011 Yes

LE Less than or equal Z | (N & NAN) 010101 Yes

NLE Not less than or equal NAN | (N | Z) 011010 Yes

GL Greater or less than NAN | Z 010110 Yes

NGL Not greater or less than NAN | Z 011001 Yes

GLE Greater, less or equal NAN 010111 Yes

NGLE Not greater, less or equal NAN 011000 Yes

IEEE-Aware Tests

EQ Equal Z 000001 No

NE Not equal Z 001110 No

OGT Ordered greater than NAN | Z | N 000010 No
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-5

Instruction Results when Exceptions Occur
7.3 Instruction Results when Exceptions Occur
Instruction execution results may be different depending on whether exceptions are enabled
in the FPCR, as shown in Table 7-5. An exception is enabled when the value of the EXC bit
is 1, disabled when the value is 0. Note that if an exception is enabled and occurs on a
FMOVE OUT, the destination is unaffected.

ULE Unordered or less or equal NAN | Z | N 001101 No

OGE Ordered greater than or equal Z | (NAN | N) 000011 No

ULT Unordered or less than NAN | (N & Z) 001100 No

OLT Ordered less than N & (NAN | Z) 000100 No

UGE Unordered or greater or equal NAN | (Z | N) 001011 No

OLE Ordered less than or equal Z | (N & NAN) 000101 No

UGT Unordered or greater than NAN | (N | Z) 001010 No

OGL Ordered greater or less than NAN | Z 000110 No

UEQ Unordered or equal NAN | Z 001001 No

OR Ordered NAN 000111 No

UN Unordered NAN 001000 No

Miscellaneous Tests

F False False 000000 No

T True True 001111 No

SF Signaling false False 010000 Yes

ST Signaling true True 011111 Yes

SEQ Signaling equal Z 010001 Yes

SNE Signaling not equal Z 011110 Yes

1 This column refers to the value in the instruction’s conditional predicate field that specifies this test.

Table 7-5. FPCR EXC Byte Exception Enabled/Disabled Results

EXC Bit Exception Description

BSUN Disabled The floating-point condition is evaluated as if it were the equivalent IEEE-aware conditional
predicate. No exceptions are taken.

Enabled The processor takes a floating-point pre-instruction exception.

INAN Disabled If the destination data format is single- or double-precision, a NAN is generated with a
mantissa of all ones and a sign of zero transferred to the destination. If the destination data
format is B, W, or L, a constant of all ones is written to the destination.

Enabled The result written to the destination is the same as the exception disabled case unless the
exception occurs on a FMOVE OUT, in which case the destination is unaffected.

Table 7-4. Floating-Point Conditional Tests (Continued)

Mnemonic Definition Equation Predicate 1 EXC[BSUN] Set
7-6 ColdFire Family Programmer’s Reference Manual

Instruction Descriptions
7.4 Instruction Descriptions
This section describes floating-point instructions in alphabetical order by mnemonic.
Operation tables list results for each situation that can be encountered in each instruction.
The top and left side of each table represent possible operand inputs, both positive and
negative; results are shown in other entries. In most cases, results are floating-point values
(numbers, infinities, zeros, or NANs), but for FCMP and FTST, the only result is the setting
of condition code bits. When none is stated, no condition code bits are set. Note that if a

IDE Disabled The operand is treated as zero, INEX is set, and processing continues.

Enabled If an operand is denormalized, an IDE exception is taken but INEX is not set so that the
handler can set INEX appropriately. The destination is overwritten with the same value as if
IDE were disabled unless the exception occurred on a FMOVE OUT, in which case the
destination is unaffected.

OPERR Disabled When the destination is a floating-point data register, the result is a double-precision NAN,
with its mantissa set to all ones and the sign set to zero (positive).
For a FMOVE OUT instruction with the format S or D, an OPERR is impossible. With the
format B, W, or L, an OPERR is possible only on a conversion to integer overflow, or if the
source is either an infinity or a NAN. On integer overflow and infinity source cases, the
largest positive or negative integer that can fit in the specified destination format (B, W, or L)
is stored. In the NAN source case, a constant of all ones is written to the destination.

Enabled The result written to the destination is the same as for the exception disabled case unless the
exception occurred on a FMOVE OUT, in which case the destination is unaffected.

OVFL Disabled The values stored in the destination based on the rounding mode defined in FPCR[MODE].
RN Infinity, with the sign of the intermediate result.
RZ Largest magnitude number, with the sign of the intermediate result.
RM For positive overflow, largest positive normalized number

For negative overflow, -∞.
RP For positive overflow, +∞

For negative overflow, largest negative normalized number.

Enabled The result written to the destination is the same as for the exception disabled case unless the
exception occurred on a FMOVE OUT, in which case the destination is unaffected.

UNFL Disabled The stored result is defined below. UNFL also sets INEX if the UNFL exception is disabled.
RN Zero, with the sign of the intermediate result.
RZ Zero, with the sign of the intermediate result.
RM For positive underflow, + 0

For negative underflow, smallest negative normalized number.
RP For positive underflow, smallest positive normalized number

For negative underflow, - 0

Enabled The result written to the destination is the same as for the exception disabled case unless the
exception occurs on a FMOVE OUT, in which case the destination is unaffected.

DZ Disabled The destination floating-point data register is written with infinity with the sign set to the
exclusive OR of the signs of the input operands.

Enabled The destination floating-point data register is written as in the exception is disabled case.

INEX Disabled The result is rounded and then written to the destination.

Enabled The result written to the destination is the same as for the exception disabled case unless the
exception occurred on a FMOVE OUT, in which case the destination is unaffected.

Table 7-5. FPCR EXC Byte Exception Enabled/Disabled Results (Continued)

EXC Bit Exception Description
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-7

Instruction Descriptions
PC-relative effective address is specified for an FPU instruction, the PC always holds the
address of the 16-bit operation word plus 2.

To understand the results of floating-point instructions under exceptional conditions
(overflow, NAN operand, etc.), refer to Table 7-5.

Table 7-6 shows data format encoding used for source data and for destination data for
FMOVE register-to-memory operations.

Table 7-6. Data Format Encoding

Source Data Format Description

000 Longword integer (L)

001 Single-precision real (S)

100 Word integer (W)

101 Double-precision real (D)

110 Byte integer (B)
7-8 ColdFire Family Programmer’s Reference Manual

Instruction Descriptions
FABS Floating-Point Absolute Value FABS

Operation: Absolute value of source → FPx

Assembler Syntax: FABS.fmt <ea>y,FPx
FABS.D FPy,FPx
FABS.D FPx
FrABS.fmt <ea>y,FPx
FrABS.D FPy,FPx
FrABS.D FPx
where r is rounding precision, S or D

Attributes: Format = byte, word, longword, single-precision, double-precision

Description: Converts the source operand to double-precision (if necessary) and stores its
absolute value in the destination floating-point data register.

FABS rounds the result to the precision selected in FPCR. FSABS and FDABS round to
single- or double-precision, respectively, regardless of the rounding precision selected in
FPCR.

FPSR[FPCC]: See Section 7.2, “Conditional Testing.”

FPSR[AEXC]: See Section 7.1, “Floating-Point Status Register (FPSR)”

Operation
Table:

Destination
Source1

1 If the source operand is a NAN, refer to Section 1.7.1.4, “Not-A-Number.”

+ In Range - + Zero - + Infinity -

Result Absolute Value Absolute Value Absolute Value

FPSR
[EXC]:

BSUN INAN IDE OPERR OVFL UNFL DZ INEX

0 See Table 7-2 0 0 0 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

Opmode
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-9

Instruction Descriptions
FABS Floating-Point Absolute Value FABS

Instruction fields:

• Source Effective Address field—Determines the addressing mode for external
operands.

— If R/M = 1, this field specifies the location of the source operand, <ea>y. Only
the addressing modes listed in the following table can be used.

— If R/M = 0, this field is unused and must be all zeros.

• R/M field—Specifies the source operand address mode.

— 1: The operation is <ea>y to register.

— 0: The operation is register to register.

• Source Specifier field—Specifies the source register or data format.

If R/M = 1, specifies the source data format. Table 7-6 shows source data format
encoding.

If R/M = 0, specifies the source floating-point data register, FPy.

• Destination Register field—Specifies the destination floating-point data register,
FPx.

• Opmode field—Specifies the instruction and rounding precision.

Addressing Mode Mode Register Addressing Mode Mode Register

Dy1

1 Only if format is byte, word, longword or single-precision.

000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay # <data> — —

(Ay)+ 011 reg. number:Ay

–(Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) — — (d8,PC,Xi) — —

Opmode Instruction Rounding Precision

0011000 FABS Rounding precision specified by FPCR
1011000 FSABS Single-precision rounding
1011100 FDABS Double-precision rounding
7-10 ColdFire Family Programmer’s Reference Manual

Instruction Descriptions
FADD Floating-Point Add FADD

Operation: Source + FPx → FPx

Assembler Syntax: FADD.fmt <ea>y,FPx
FADD.D FPy,FPx
FrADD.fmt <ea>y,FPx
FrADD.D FPy,FPx
where r is rounding precision, S or D

Attributes: Format = byte, word, longword, single-precision, double-precision

Description: Converts the source operand to double-precision (if necessary) and adds that
number to the number in the destination floating-point data register. Stores the result in the
destination floating-point data register.

FADD rounds the result to the precision selected in FPCR. FSADD and FDADD round the
result to single- or double-precision, respectively, regardless of the rounding precision
selected in FPCR.

FPSR[FPCC]: See Section 7.2, “Conditional Testing.”

FPSR[AEXC]: See Section 7.1, “Floating-Point Status Register (FPSR)”

Operation
Table:

Destination
Source1

1 If the source operand is a NAN, refer to Section 1.7.1.4, “Not-A-Number.”

+ In Range - + Zero - + Infinity -

 In Range +

 -
Add Add +inf - inf

 Zero +

 -
Add +0.0 0.02

0.02 –0.0

2 Returns +0.0 in rounding modes RN, RZ, and RP; returns –0.0 in RM.

+inf –inf

 Infinity +

 -
+inf
–inf

+inf
–inf

+inf NAN3
NAN3 –inf

3 Sets the OPERR bit in the FPSR exception byte.

FPSR
[EXC]:

BSUN INAN IDE OPERR OVFL UNFL DZ INEX

0 See Table 7-2 Set if source and destination
are opposite-signed infinities;
cleared otherwise.

See Table 7-2 0 See
Table 7-2
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-11

Instruction Descriptions
FADD Floating-Point Add FADD

Instruction fields:

• Source Effective Address field—Determines the addressing mode.

— If R/M = 1, this field specifies the location of the source operand, <ea>y. Only
the addressing modes listed in the following table can be used.

— If R/M = 0, this field is unused and must be all zeros.

• R/M field—Specifies the source operand address mode.

— 1: The operation is <ea>y to register.

— 0: The operation is register to register.

• Source Specifier field—Specifies the source register or data format.

— If R/M = 1, specifies the source data format. See Table 7-6.

— If R/M = 0, specifies the source floating-point data register, FPy.

• Destination Register field—Specifies the destination floating-point register, FPx.

• Opmode field—Specifies the instruction and rounding precision.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

Opmode

Addressing Mode Mode Register Addressing Mode Mode Register

Dy1

1 Only if format is byte, word, longword or single-precision.

000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay # <data> — —

(Ay)+ 011 reg. number:Ay

–(Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) — — (d8,PC,Xi) — —

Opmode Instruction Rounding Precision

0100010 FADD Rounding precision specified by FPCR
1100010 FSADD Single-precision rounding
1100110 FDADD Double-precision rounding
7-12 ColdFire Family Programmer’s Reference Manual

Instruction Descriptions
FBcc Floating-Point Branch Conditionally FBcc

Operation: If Condition True
Then PC + dn → PC

Assembler Syntax: FBcc.fmt <label>

Attributes: Format = word, longword

Description: If the specified condition is met, execution continues at (PC) + displacement,
a 2’s-complement integer that counts relative distance in bytes. The PC value determining
the destination is the branch address plus 2. For word displacement, a 16-bit value is stored
in the word after the instruction operation word. For longword displacement, a 32-bit value
is stored in the longword after the instruction operation word. The specifier cc selects a test
described in Section 7.2, “Conditional Testing.”

FPSR[FPCC]: Not affected.

Instruction fields:

• Size field—Specifies the size of the signed displacement.

— If size = 1, displacement is 32 bits.

— If size = 0, displacement is 16 bits and is sign-extended before use.

• Conditional predicate field—Specifies a conditional test defined in Table 7-4.

NOTE:
A BSUN exception causes a pre-instruction exception to be
taken. If the handler does not update the stack frame PC image
to point to the instruction after FBcc, it must clear the NAN bit
or disable the BSUN trap, or the exception recurs on returning.

FPSR
[EXC]:

BSUN INAN IDE OPERR OVFL UNFL DZ INEX

Set if the NAN bit is set and the
condition selected is an IEEE
nonaware test.

Not affected

FPSR
[AEXC]:

IOP OVFL UNFL DZ INEX

Set if EXC[BSUN] is set. Not affected

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 Size Conditional Predicate

16-Bit Displacement or Most Significant Word of 32-bit Displacement

Least Significant Word of 32-bit Displacement (if needed)
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-13

Instruction Descriptions
FCMP Floating-Point Compare FCMP

Operation: FPx – Source

Assembler Syntax: FCMP.fmt <ea>y,FPx
FCMP.D FPy,FPx

Attributes: Format = byte, word, longword, single-precision, double-precision

Description: Converts the source operand to double-precision (if necessary) and subtracts
the operand from the destination floating-point data register. The result of the subtraction is
not retained but is used to set floating-point condition codes as described in Section 7.2,
“Conditional Testing.”

Note that if either operand is denormalized, it is treated as zero. Thus, two denormalized
operands will compare as equal (set FPCC[Z]) even if they are not identical. This situation
can be detected with INEX or IDE.

The entries in this table differ from those for most floating-point instructions. For each
combination of input operand types, condition code bits that may be set are indicated. If a
condition code bit name is given and is not enclosed in brackets, it is always set. If the name
is enclosed in brackets, the bit is set or cleared, as appropriate. If the name is not given, the
operation always clears the bit. FCMP always clears the infinity bit because it is not used
by any conditional predicate equations.

NOTE:
The NAN bit is not shown because NANs are always handled
in the same manner (see Section 1.7.1.4, “Not-A-Number).

FPSR[FPCC]: See preceding operation table.

Operation
Table:

Destination
Source1

1 If the source operand is a NAN, refer to Section 1.7.1.4, “Not-A-Number.”

+ In Range - + Zero - + Infinity -

 In Range +

 -
{NZ} none
N {NZ}

none none
N N

N none
N none

 Zero +

 -
N none
N none

Z Z
NZ NZ

N none
N none

 Infinity +

 -
none none
N N

none none
N N

Z none
N NZ

FPSR
[EXC]:

BSUN INAN IDE OPERR OVFL UNFL DZ INEX

0 See Table 7-2 0 0 0 0 Set if either operand is denormalized
and the operands are not exactly the
same and IDE is disabled, cleared
otherwise.
7-14 ColdFire Family Programmer’s Reference Manual

Instruction Descriptions
FCMP Floating-Point Compare FCMP

FPSR[AEXC]: See Section 7.1, “Floating-Point Status Register (FPSR)”

Instruction fields:

• Effective Address field—Specifies the addressing mode for external operands.

If R/M = 1, this field specifies the location of the source operand, <ea>y. Only the
addressing modes listed in the following table can be used:

If R/M = 0, this field is unused and must be all zeros.

• R/M field—Specifies the source operand address mode.

— 1: The operation is <ea>y to register.

— 0: The operation is register to register.

• Source specifier field—Specifies the source register or data format.

If R/M = 1, specifies the source data format. See Table 7-6.

If R/M = 0, specifies the source floating-point data register, FPy.

• Destination register field—Specifies the destination floating-point register, FPx.
FCMP does not overwrite the register specified by this field.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

0 1 1 1 0 0 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dy1

1 Only if format is byte, word, longword or single-precision.

000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay # <data> — —

(Ay)+ 011 reg. number:Ay

–(Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) — — (d8,PC,Xi) — —
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-15

Instruction Descriptions
FDIV Floating-Point Divide FDIV

Operation: FPx / Source → FPx

Assembler Syntax: FDIV.fmt <ea>y,FPx
FDIV.D FPy,FPx
FrDIV.fmt <ea>y,FPx
FrDIV.D FPy,FPx
where r is rounding precision, S or D

Attributes: Format = byte, word, longword, single-precision, double-precision

Description: Converts the source operand to double-precision (if necessary) and divides it
into the number in the destination floating-point data register. Stores the result in the
destination floating-point data register.

FDIV rounds the result to the precision selected in FPCR. FSDIV and FDDIV round the
result to single- or double-precision, respectively, regardless of the rounding precision
selected in FPCR.

FPSR[FPCC]: See Section 7.2, “Conditional Testing.”

FPSR[AEXC]: See Section 7.1, “Floating-Point Status Register (FPSR)”

Operation
Table:

Destination
Source1

1 If the source operand is a NAN, refer to Section 1.7.1.4, “Not-A-Number.”

+ In Range - + Zero - + Infinity -

 In Range +

 -
Divide

+inf2 –inf2

–inf2 +inf2

2 Sets the DZ bit in the FPSR exception byte.

+0.0 –0.0
–0.0 +0.0

 Zero +

 -
+0.0 –0.0
–0.0 +0.0 NAN3

3 Sets the OPERR bit in the FPSR exception byte.

+0.0 –0.0
–0.0 +0.0

 Infinity +

 -
+inf –inf
–inf +inf

+inf –inf
–inf +inf NAN3

FPSR
[EXC]:

BSUN INAN IDE OPERR OVFL UNFL DZ INEX

0 See Table 7-2 Set for 0 ÷ 0
or ∞ ÷ ∞;
cleared
otherwise.

See Table 7-2 Set if source is 0
and destination is in
range; cleared
otherwise.

See
Table 7-2
7-16 ColdFire Family Programmer’s Reference Manual

Instruction Descriptions
FDIV Floating-Point Divide FDIV

Instruction fields:

• Effective Address field—Specifies the addressing mode for external operands.

If R/M = 1, this field specifies the location of the source operand, <ea>y. Only the
addressing modes listed in the following table can be used.

If R/M = 0, this field is unused and must be all zeros.

• R/M field—Specifies the source operand address mode.

— 1: The operation is <ea>y to register.

— 0: The operation is register to register.

• Source specifier field—Specifies the source register or data format.

If R/M = 1, specifies the source data format. See Table 7-6.

If R/M = 0, specifies the source floating-point data register, FPy.

• Destination register field—Specifies the destination floating-point register, FPx.

• Opmode field—Specifies the instruction and rounding precision.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

Opmode

Addressing Mode Mode Register Addressing Mode Mode Register

Dy1

1 Only if format is byte, word, longword or single-precision.

000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay # <data> — —

(Ay)+ 011 reg. number:Ay

–(Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) — — (d8,PC,Xi) — —

Opmode Instruction Rounding Precision

0100000 FDIV Rounding precision specified by FPCR
1100000 FSDIV Single-precision rounding
1100100 FDDIV Double-precision rounding
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-17

Instruction Descriptions
FINT Floating-Point Integer FINT

Operation: Integer Part of Source → FPx

Assembler Syntax: FINT.fmt <ea>y,FPx
FINT.D FPy,FPx
FINT.D FPx

Attributes: Format = byte, word, longword, single-precision, double-precision

Description: Converts the source operand to double-precision (if necessary), extracts the
integer part, and converts it to a double-precision value. Stores the result in the destination
floating-point data register. The integer part is extracted by rounding the double-precision
number to an integer using the current rounding mode selected in the FPCR mode control
byte. Thus, the integer part returned is the number to the left of the radix point when the
exponent is zero after rounding. For example, the integer part of 137.57 is 137.0 for
round-to-zero and round-to-negative infinity modes and 138.0 for round-to-nearest and
round-to-positive infinity modes. Note that the result of this operation is a floating-point
number.

FPSR[FPCC]: See Section 7.2, “Conditional Testing.”

FPSR[AEXC]: See Section 7.1, “Floating-Point Status Register (FPSR)”

Operation
Table:

Destination
Source1

1 If the source operand is a NAN, refer to Section 1.7.1.4, “Not-A-Number.”

+ In Range - + Zero - + Infinity -

Result Integer +0.0 –0.0 +inf –inf

FPSR
[EXC]:

BSUN INAN IDE OPERR OVFL UNFL DZ INEX

0 See Table 7-2 0 0 0 0 See Table 7-2

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

0 0 0 0 0 0 1
7-18 ColdFire Family Programmer’s Reference Manual

Instruction Descriptions
FINT Floating-Point Integer FINT

Instruction fields:

• Source Effective Address field—Determines the addressing mode for external
operands.

If R/M = 1, this field specifies the location of the source operand <ea>y. Only the
addressing modes the following table can be used.

If R/M = 0, this field is unused and should be all zeros.

• R/M field—Specifies the source operand address mode.

— 1: The operation is <ea>y to register.

— 0: The operation is register to register.

• Source specifier field—Specifies the source register or data format.

If R/M = 1, specifies the source data format. See Table 7-6.

If R/M = 0, specifies the source floating-point data register, FPy.

• Destination register field—Specifies the destination floating-point register, FPx.

If R/M = 0 and the source and destination fields are equal, the input operand is taken
from the specified floating-point data register, and the result is written into the same
register. If the single register syntax is used, Motorola assemblers set the source and
destination fields to the same value.

Addressing Mode Mode Register Addressing Mode Mode Register

Dy1

1 Only if format is byte, word, longword or single-precision.

000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay # <data> — —

(Ay)+ 011 reg. number:Ay

–(Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) — — (d8,PC,Xi) — —
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-19

Instruction Descriptions
FINTRZ Floating-Point Integer Round-to-Zero FINTRZ

Operation: Integer Part of Source → FPx

Assembler Syntax: FINTRZ.fmt <ea>y,FPx
FINTRZ.D FPy,FPx
FINTRZ.D FPx

Attributes: Format = byte, word, longword, single-precision, double-precision

Description: Converts the source operand to double-precision (if necessary) and extracts
the integer part and converts it to a double-precision number. Stores the result in the
destination floating-point data register. The integer part is extracted by rounding the
double-precision number to an integer using the round-to-zero mode, regardless of the
rounding mode selected in the FPCR mode control byte (making it useful for FORTRAN
assignments). Thus, the integer part returned is the number that is to the left of the radix
point when the exponent is zero. For example, the integer part of 137.57 is 137.0. Note the
result of this operation is a floating-point number.

FPSR[FPCC]: See Section 7.2, “Conditional Testing.”

FPSR[AEXC]: See Section 7.1, “Floating-Point Status Register (FPSR)”

Operation
Table:

Destination
Source1

1 If the source operand is a NAN, refer to Section 1.7.1.4, “Not-A-Number.”

+ In Range - + Zero - + Infinity -

Result Integer, Forced to
Round to Zero

+0.0 –0.0 +inf –inf

FPSR
[EXC]:

BSUN INAN IDE OPERR OVFL UNFL DZ INEX

0 See Table 7-2 0 0 0 0 See Table 7-2

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

0 0 0 0 0 1 1
7-20 ColdFire Family Programmer’s Reference Manual

Instruction Descriptions
FINTRZ Floating-Point Integer Round-to-Zero FINTRZ

Instruction fields:

• Effective Address field—Determines the addressing mode for external operands.

If R/M = 1, this field specifies the location of the source operand, <ea>y. Only the
addressing modes listed in the following table can be used.

If R/M = 0, this field is unused and should be all zeros.

• R/M field—Specifies the source operand address mode.

— 1: The operation is <ea>y to register.

— 0: The operation is register to register.

• Source specifier field—Specifies the source register or data format.

If RM = 1, specifies the source data format. See Table 7-6.

If R/M = 0, specifies the source floating-point data register, FPy.

• Destination register field—Specifies the destination floating-point register, FPx.

If R/M = 0 and the source and destination fields are equal, the input operand is taken
from the specified floating-point data register and the result is written into the same
register. If the single register syntax is used, Motorola assemblers set the source and
destination fields to the same value.

Addressing Mode Mode Register Addressing Mode Mode Register

Dy1

1 Only if format is byte, word, longword or single-precision.

000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay # <data> — —

(Ay)+ 011 reg. number:Ay

–(Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) — — (d8,PC,Xi) — —
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-21

Instruction Descriptions
FMOVE Move Floating-Point Data Register FMOVE

Operation: Source → Destination

Assembler Syntax: FMOVE.fmt <ea>y,FPx
FMOVE.fmt FPy,<ea>x
FMOVE.D FPy,FPx
FrMOVE.fmt <ea>y, FPx
FrMOVE.D FPy, FPx
where r is rounding precision, S or D

Attributes: Format = byte, word, longword, single-precision, double-precision

Description: Moves the contents of the source operand to the destination operand.
Although the primary function of FMOVE is data movement, it is considered an arithmetic
instruction because conversions from the source operand format to the destination operand
format occur implicitly. Also, the source operand is rounded according to the selected
rounding precision and mode.

Unlike MOVE, FMOVE does not support a memory-to-memory format. For such transfers,
MOVE is much faster than FMOVE to transfer floating-point data. FMOVE supports
memory-to-register, register-to-register, and register-to-memory operations (memory here
can include an integer data register if the format is byte, word, longword, or
single-precision). Memory- and register-to-register operations use a command word
encoding different from that used by the register-to-memory operation; these two operation
classes are described separately.

Memory- and register-to-register operations (<ea>y,FPx; FPy,FPx): Converts the
source operand to a double-precision number (if necessary) and stores it in the destination
floating-point data register, FPx. FMOVE rounds the result to the precision selected in
FPCR. FSMOVE and FDMOVE round the result to single- and double-precision,
regardless of the rounding selected in FPCR. Note that if the source format is longword or
double precision, inexact results may be created when rounding to single precision. All
other combinations of source formats and rounding precision produce an exact result.

FPSR[FPCC]: See Section 7.2, “Conditional Testing.”

FPSR[AEXC]: See Section 7.1, “Floating-Point Status Register (FPSR)”

FPSR
[EXC]:

BSUN INAN IDE OPERR OVFL UNFL DZ INEX

0 See Table 7-2 0 0 0 0 See Table 7-2
7-22 ColdFire Family Programmer’s Reference Manual

Instruction Descriptions
FMOVE Move Floating-Point Data Register FMOVE

Instruction fields:

• Effective address field—Determines the addressing mode for external operands.

If R/M = 1, this field specifies the location of the source operand. Only the
addressing modes listed in the following table can be used.

If R/M = 0, this field is unused and must be all zeros.

• R/M field—Specifies the source operand address mode.

If R/M = 0 the operation is register to register.

If R/M = 1 the operation is <ea>y to register.

• Source specifier field—Specifies the source register or data format.

If R/M = 0, specifies the source floating-point data register, FPy.

If R/M = 1, specifies the source data format. See Table 7-6.

• Destination register field—Specifies the destination floating-point register, FPx.

• Opmode field—Specifies the instruction and rounding precision.

Instruction
Format:
<ea>y,FPx
FPy,FPx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

Opmode

Addressing Mode Mode Register Addressing Mode Mode Register

Dy1

1 Only if format is byte, word, longword or single-precision.

000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay # <data> — —

(Ay)+ 011 reg. number:Ay

–(Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) — — (d8,PC,Xi) — —

Opmode Instruction Rounding Precision

0000000 FMOVE Rounding precision specified by the FPCR
1000000 FSMOVE Single-precision rounding
1000100 FDMOVE Double-precision rounding
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-23

Instruction Descriptions
FMOVE Move Floating-Point Data Register FMOVE

Register-to-memory operation (FPy,<ea>x): Rounds the source operand to the specified
destination format and stores it at the destination effective address, <ea>x. Note that the
rounding mode in FPCR is ignored for register-to-memory operations.

FPSR[FPCC]: Not affected.

FPSR[AEXC]: See Section 7.1, “Floating-Point Status Register (FPSR)”

Instruction fields:

• Destination Effective Address field—Specifies the destination location, <ea>x. Only
modes in the following table can be used.

• Destination Format field—Specifies the data format of the destination operand. See
Table 7-6.

• Source Register field—Specifies the source floating-point data register, FPy.

FPSR
[EXC]:
format = .B, .W,
or .L

BSUN INAN IDE OPERR OVFL UNFL DZ INEX

0 See Table 7-2 Set if source operand is ∞
or if destination size is
exceeded after
conversion and rounding;
cleared otherwise.

0 0 0 See
Table 7-2

format = .S or
.D

0 See Table 7-2 0

Instruction
Format
FPy,<ea>x:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Destination Effective Address

Mode Register

0 1 1 Destination
Format

Source Register,
FPy

0 0 0 0 0 0 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dx1

1 Only if format is byte, word, longword or single-precision.

000 reg. number:Dx (xxx).W — —

Ax — — (xxx).L — —

(Ax) 010 reg. number:Ax # <data> — —

(Ax)+ 011 reg. number:Ax

–(Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
7-24 ColdFire Family Programmer’s Reference Manual

Instruction Descriptions
FMOVE FMOVE
from FPCR Move from the Floating from FPCR

 Point Control Register

Operation: FPCR → Destination

Assembler syntax: FMOVE.L FPCR,<ea>x

Attributes: Format = longword

Description: Moves the contents of the FPCR to an effective address. A 32-bit transfer is
always performed, even though the FPCR does not have 32 implemented bits.
Unimplemented bits of a control register are read as zeros. Exceptions are not taken upon
execution of this instruction.

FPSR: Not affected

Instruction field:

• Effective Address field—Specifies the addressing mode, <ea>x, shown in the
following table:

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Destination Effective Address

Mode Register

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dx 000 reg. number:Dx (xxx).W — —

Ax — — (xxx).L — —

(Ax) 010 reg. number:Ax # <data> — —

(Ax)+ 011 reg. number:Ax

–(Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) — — (d8,PC,Xi) — —
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-25

Instruction Descriptions
FMOVE FMOVE
from FPIAR Move from the Floating from FPIAR

 Point Instruction Address Register

Operation: FPIAR → Destination

Assembler syntax: FMOVE.L FPIAR,<ea>x

Attributes: Format = longword

Description: Moves the contents of the floating-point instruction address register to an
effective address. Exceptions are not taken upon execution of this instruction.

FPSR: Not affected

Instruction field:

• Effective Address field—Specifies the addressing mode, <ea>x, shown in the
following table:

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Destination Effective Address

Mode Register

1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dx 000 reg. number:Dx (xxx).W — —

Ax 001 reg. number:Ax (xxx).L — —

(Ax) 010 reg. number:Ax # <data> — —

(Ax)+ 011 reg. number:Ax

–(Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) — — (d8,PC,Xi) — —
7-26 ColdFire Family Programmer’s Reference Manual

Instruction Descriptions
FMOVE FMOVE
from FPSR Move from the Floating from FPSR

 Point Status Register

Operation: FPSR → Destination

Assembler syntax: FMOVE.L FPSR,<ea>x

Attributes: Format = longword

Description: Moves the contents of the FPCR to an effective address. A 32-bit transfer is
always performed, even though the FPSR does not have 32 implemented bits.
Unimplemented bits of a control register are read as zeros. Exceptions are not taken upon
execution of this instruction.

FPSR: Not affected

Instruction field:

• Effective Address field—Specifies the addressing mode, <ea>x, shown in the
following table:

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Destination Effective Address

Mode Register

1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dx 000 reg. number:Dx (xxx).W — —

Ax — — (xxx).L — —

(Ax) 010 reg. number:Ax # <data> — —

(Ax)+ 011 reg. number:Ax

–(Ax) 100 reg. number:Ax

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) — — (d8,PC,Xi) — —
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-27

Instruction Descriptions
FMOVE FMOVE
to FPCR Move to the Floating to FPCR

 Point Control Register

Operation: Source → FPCR

Assembler syntax: FMOVE.L <ea>y,FPCR

Attributes: Format = longword

Description: Loads the FPCR from an effective address. A 32-bit transfer is always
performed, even though the FPCR does not have 32 implemented bits. Unimplemented bits
are ignored during writes (must be zero for compatibility with future devices). Exceptions
are not taken upon execution of this instruction.

FPSR: Not affected.

Instruction field:

• Effective Address field—Specifies the addressing mode, <ea>y, shown in the
following table:

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay # <data> — —

(Ay)+ 011 reg. number:Ay

–(Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) — — (d8,PC,Xi) — —
7-28 ColdFire Family Programmer’s Reference Manual

Instruction Descriptions
FMOVE FMOVE
to FPIAR Move to the Floating to FPIAR

 Point Instruction Address Register

Operation: Source → FPIAR

Assembler syntax: FMOVE.L <ea>y,FPIAR

Attributes: Format = longword

Description: Loads the floating-point instruction address register from an effective
address. Exceptions are not taken upon execution of this instruction.

FPSR: Not affected.

Instruction field:

• Effective Address field—Specifies the addressing mode, <ea>y, shown in the
following table:

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W — —

Ay 001 reg. number:Ay (xxx).L — —

(Ay) 010 reg. number:Ay # <data> — —

(Ay)+ 011 reg. number:Ay

–(Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) — — (d8,PC,Xi) — —
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-29

Instruction Descriptions
FMOVE FMOVE
to FPSR Move to the Floating to FPSR

 Point Status Register

Operation: Source → FPSR

Assembler syntax: FMOVE.L <ea>y,FPSR

Attributes: Format = longword

Description: Loads the FPSR from an effective address. A 32-bit transfer is always
performed, even though the FPSR does not have 32 implemented bits. Unimplemented bits
are ignored during writes (must be zero for compatibility with future devices). Exceptions
are not taken upon execution of this instruction.

FPSR: All bits are modified to reflect the source operand value.

Instruction field:

• Effective Address field—Specifies the addressing mode, <ea>y, shown in the
following table:

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay # <data> — —

(Ay)+ 011 reg. number:Ay

–(Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) — — (d8,PC,Xi) — —
7-30 ColdFire Family Programmer’s Reference Manual

Instruction Descriptions
FMOVEM Move Multiple Floating-Point FMOVEM
 Data Registers

Operation: Register List → Destination
Source → Register List

Assembler syntax: FMOVEM.D #list,<ea>x
FMOVEM.D <ea>y,#list

Attributes: Format = double-precision

Description: Moves one or more double-precision numbers to or from a list of
floating-point data registers. No conversion or rounding is performed during this operation,
and the FPSR is not affected by the instruction. Exceptions are not taken upon execution of
this instruction. Any combination of the eight floating-point data registers can be
transferred, with selected registers specified by a user-supplied mask. This mask is an 8-bit
number, where each bit corresponds to one register; if a bit is set in the mask, that register
is moved. Note that a null register list (all zeros) generates a line F exception.

FMOVEM allows two addressing modes: address register indirect and base register plus
16-bit displacement, where the base is an address register, or for loads only, the program
counter. In all cases, the processor calculates the starting address and then increments by 8
bytes for each register moved. The transfer order is always FP0-FP7.

NOTE:
FMOVEM offers the only way to move floating-point data
between the FPU and memory without converting data or
affecting condition code and exception status bits.

FPSR: Not affected.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Effective Address

Mode Register

1 1 dr 1 0 0 0 0 Register List
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-31

Instruction Descriptions
FMOVEM Move Multiple Floating-Point Data RegistersFMOVEM

Instruction fields:

• Effective address field—Specifies the addressing mode. For memory-to-register the
allowed <ea>y modes are shown in the following table:

• Effective address field—Specifies the addressing mode. For register-to-memory the
allowed <ea>x modes are shown in the following table:

• dr field—Specifies the direction of the transfer.

— 0: Move the listed registers from memory to the FPU.

— 1: Move the listed registers from the FPU to memory.

• Register list field—Contains the register select mask. If a register is to be moved, the
corresponding mask bit is set as shown below; otherwise it is zero.

Addressing Mode Mode Register Addressing Mode Mode Register

Dy — — (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay # <data> — —

(Ay)+ — —

–(Ay) — —

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) — — (d8,PC,Xi) — —

Addressing Mode Mode Register Addressing Mode Mode Register

Dx — — (xxx).W — —

Ax — — (xxx).L — —

(Ax) 010 reg. number:Ax # <data> — —

(Ax)+ — —

–(Ax) — —

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) — — (d8,PC,Xi) — —

7 6 5 4 3 2 1 0

FP0 FP1 FP2 FP3 FP4 FP5 FP6 FP7
7-32 ColdFire Family Programmer’s Reference Manual

Instruction Descriptions
FMUL Floating-Point Multiply FMUL

Operation: Source * FPx → FPx

Assembler syntax: FMUL.fmt <ea>y,FPx
FMUL.D FPy,FPx
FrMUL.fmt <ea>y,FPx
FrMUL.D FPy,FPx
where r is rounding precision, S or D

Attributes: Format = byte, word, longword, single-precision, double-precision

Description: Converts source operand to double-precision (if necessary) and multiplies
that number by the number in destination floating-point data register. Stores result in the
destination floating-point data register.

FMUL rounds the result to the precision selected in FPCR. FSMUL and FDMUL round the
result to single- or double-precision, respectively, regardless of the rounding precision
selected in FPCR.

FPSR[FPCC]: See Section 7.2, “Conditional Testing.”

FPSR[AEXC]: See Section 7.1, “Floating-Point Status Register (FPSR)”

Operation
Table:

Destination
Source1

1 If the source operand is a NAN, refer to Section 1.7.1.4, “Not-A-Number.”

+ In Range - + Zero - + Infinity -

 In Range +

 -
Multiply +0.0 –0.0

–0.0 +0.0
+inf –inf
–inf +inf

 Zero +

 -
+0.0 –0.0
–0.0 +0.0

+0.0 –0.0
–0.0 +0.0 NAN2

2 Sets the OPERR bit in the FPSR exception byte.

 Infinity +

 -
+inf –inf
–inf +inf NAN2 +inf –inf

–inf +inf

FPSR
[EXC]:

BSUN INAN IDE OPERR OVFL UNFL DZ INEX

0 See Table 7-2 Set for 0 x ∞; cleared
otherwise.

See Table 7-2 0 See
Table 7-2

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

Opmode
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-33

Instruction Descriptions
FMUL Floating-Point Multiply FMUL

Instruction fields:

• Effective address field—Determines the addressing mode for external operands.

If R/M = 1, this field specifies the location of the source operand. Only the
addressing modes listed in the following table can be used.

If R/M = 0, this field is unused and must be all zeros.

• R/M field—Specifies the source operand address mode.

— 1: The operation is <ea>y to register.

— 0: The operation is register to register.

• Source specifier field—Specifies the source register or data format.

If R/M = 1, specifies the source data format. See Table 7-6.

If R/M = 0, specifies the source floating-point data register, FPy.

• Destination register field—Specifies the destination floating-point register, FPx.

• Opmode field—Specifies the instruction and rounding precision.

Addressing Mode Mode Register Addressing Mode Mode Register

Dy1

1 Only if format is byte, word, longword or single-precision.

000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay # <data> — —

(Ay)+ 011 reg. number:Ay

–(Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) — — (d8,PC,Xi) — —

Opmode Instruction Rounding Precision

0100011 FMUL Rounding precision specified by the FPCR
1100011 FSMUL Single-precision rounding
1100111 FDMUL Double-precision rounding
7-34 ColdFire Family Programmer’s Reference Manual

Instruction Descriptions
FNEG Floating-Point Negate FNEG

Operation: – (Source) → FPx

Assembler syntax: FNEG.fmt <ea>y,FPx
FNEG.D FPy,FPx
FNEG.D FPx
FrNEG.fmt <ea>y,FPx
FrNEG.D FPy,FPx
FrNEG.D FPx
where r is rounding precision, S or D

Attributes: Format = byte, word, longword, single-precision, double-precision

Description: Converts the source operand to double-precision (if necessary) and inverts the
sign of the mantissa. Stores the result in the destination floating-point data register, FPx.

FNEG rounds the result to the precision selected in the FPCR. FSNEG and FDNEG round
the result to single- or double-precision, respectively, regardless of the rounding precision
selected in the FPCR.

FPSR[FPCC]: See Section 7.2, “Conditional Testing.”

FPSR[AEXC]: See Section 7.1, “Floating-Point Status Register (FPSR)”

Operation
Table:

Destination
Source1

1 If the source operand is a NAN, refer to Section 1.7.1.4, “Not-A-Number.”

+ In Range - + Zero - + Infinity -

Result Negate –0.0 +0.0 –inf +inf

FPSR
[EXC]:

BSUN INAN IDE OPERR OVFL UNFL DZ INEX

0 See Table 7-2 0 0 0 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

Opmode
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-35

Instruction Descriptions
FNEG Floating-Point Negate FNEG

Instruction fields:

• Effective Address field—Determines the addressing mode for external operands.

If R/M = 1, this field specifies the location of the source operand. Only modes in the
following table can be used.

If R/M = 0, this field is unused and must be all zeros.

• R/M field—Specifies the source operand address mode.

— 1: The operation is <ea>y to register.

— 0: The operation is register to register.

• Source specifier field—Specifies the source register or data format.

If R/M = 1, specifies the source data format. See Table 7-6.

If R/M = 0, specifies the source floating-point data register, FPy.

• Destination register field—Specifies the destination floating-point register, FPx.

If R/M = 0 and the source and destination fields are equal, the input operand is taken
from the specified floating-point data register and the result is written into the same
register. If the single register syntax is used, Motorola assemblers set the source and
destination fields to the same value.

• Opmode field—Specifies the instruction and rounding precision.

Addressing Mode Mode Register Addressing Mode Mode Register

Dy1

1 Only if format is byte, word, longword or single-precision.

000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay # <data> — —

(Ay)+ 011 reg. number:Ay

–(Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) — — (d8,PC,Xi) — —

Opmode Instruction Rounding Precision

0011010 FNEG Rounding precision specified by the FPCR
1011010 FSNEG Single-precision rounding
1011110 FDNEG Double-precision rounding
7-36 ColdFire Family Programmer’s Reference Manual

Instruction Descriptions
FNOP No Operation FNOP

Operation: None

Assembler syntax: FNOP

Attributes: Unsized

Description: FNOP performs no explicit operation. It is used to synchronize the FPU with
an integer unit or to force processing of pending exceptions. For most floating-point
instructions, the integer unit can continue executing the next instruction once the FPU has
any operands needed for an operation, thus supporting concurrent execution of integer and
floating-point instructions. FNOP causes the integer unit to wait for all previous
floating-point instructions to complete. It also forces any exceptions pending from the
execution of a previous floating-point instruction to be processed as a pre-instruction
exception. The opcode for FNOP is 0xF280 0000.

FPSR: Not affected.

NOTE:
FNOP uses the same opcode as the FBcc.W <label>
instruction, with cc = F (nontrapping false) and <label> = + 2
(which results in a displacement of 0).

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-37

Instruction Descriptions
FSQRT Floating-Point Square Root FSQRT

Operation: Square Root of Source → FPx

Assembler syntax: FSQRT.fmt <ea>y,FPx
FSQRT.D FPy,FPx
FSQRT.D FPx
FrSQRT.fmt <ea>y,FPx
FrSQRT.D FPy,FPx
FrSQRT.D FPx
where r is rounding precision, S or D

Attributes: Format = byte, word, longword, single-precision, double-precision

Description: Converts the source operand to double-precision (if necessary) and calculates
the square root of that number. Stores the result in the destination floating-point data
register, FPx. This function is not defined for negative operands.

FSQRT rounds the result to the precision selected in the FPCR. FSFSQRT and FDFSQRT
round the result to single- or double-precision, respectively, regardless of the rounding
precision selected in the FPCR.

FPSR[FPCC]: See Section 7.2, “Conditional Testing.”

FPSR[AEXC]: See Section 7.1, “Floating-Point Status Register (FPSR)”

Operation
Table:

Destination
Source1

1 If the source operand is a NAN, refer to Section 1.7.1.4, “Not-A-Number.”

+ In Range - + Zero - + Infinity -

Result NAN2

2 Sets the OPERR bit in the FPSR exception byte.

+0.0 –0.0 +inf NAN2

FPSR
[EXC]:

BSUN INAN IDE OPERR OVFL UNFL DZ INEX

0 See Table 7-2 Set if the source operand is
not 0 and is negative; cleared
otherwise.

0 0 0 See
Table 7-2

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

Opmode

x

7-38 ColdFire Family Programmer’s Reference Manual

Instruction Descriptions
FSQRT Floating-Point Square Root FSQRT

Instruction fields:

• Effective address field—Specifies the addressing mode for external operands.

If R/M = 1, this field specifies the location of the source operand, <ea>y. Only modes
in the following table can be used.

If R/M = 0, this field is unused and must be all zeros.

• R/M field—Specifies the source operand address mode.

— 1: The operation is <ea>y to register.

— 0: The operation is register to register.

• Source specifier field—Specifies the source register or data format.

If R/M = 1, specifies the source data format. See Table 7-6.

If R/M = 0, specifies the source floating-point data register, FPy.

• Destination register field—Specifies the destination floating-point register, FPx.

If R/M = 0 and source and destination fields are equal, the input operand comes from
the specified floating-point data register, and the result is written into the same
register. If single register syntax is used, Motorola assemblers set the source and
destination fields to the same value.

• Opmode field—Specifies the instruction and rounding precision.

Addressing Mode Mode Register Addressing Mode Mode Register

Dy1

1 Only if format is byte, word, longword or single-precision.

000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay # <data> — —

(Ay)+ 011 reg. number:Ay

–(Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) — — (d8,PC,Xi) — —

Opmode Instruction Rounding Precision

0000100 FSQRT Rounding precision specified by the FPCR
1000001 FSSQRT Single-precision rounding
1000101 FDSQRT Double-precision rounding
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-39

Instruction Descriptions
FSUB Floating-Point Subtract FSUB

Operation: FPx – Source → FPx

Assembler syntax: FSUB.fmt <ea>y,FPx
FSUB.D FPy,FPx
FrSUB.fmt <ea>y,FPx
FrSUB.D FPy,FPx
where r is rounding precision, S or D

Attributes: Format = byte, word, longword, single-precision, double-precision

Description: Converts the source operand to double-precision (if necessary) and subtracts
it from the number in the destination floating-point data register. Stores the result in the
destination floating-point data register.

FPSR[FPCC]: See Section 7.2, “Conditional Testing.”

FPSR[AEXC]: See Section 7.1, “Floating-Point Status Register (FPSR).”

Operation
Table:

Destination
Source1

1 If the source operand is a NAN, refer to Section 1.7.1.4, “Not-A-Number.”

+ In Range - + Zero - + Infinity -

 In Range +

 -
Subtract Subtract –inf +inf

 Zero +

 -
Subtract 0.02 +0.0

–0.0 0.02

2 Returns +0.0 in rounding modes RN, RZ, and RP; returns –0.0 in RM.

–inf +inf

 Infinity +

 -
+inf
–inf

+inf
–inf

NAN3 +inf
–inf NAN3

3 Sets the OPERR bit in the FPSR exception byte.

FPSR
[EXC]:

BSUN INAN IDE OPERR OVFL UNFL DZ INEX

0 See Table 7-2 Set if source and destination
are like-signed infinities;
cleared otherwise.

See Table 7-2 0 See
Table 7-2

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

Opmode
7-40 ColdFire Family Programmer’s Reference Manual

Instruction Descriptions
FSUB Floating-Point Subtract FSUB

Instruction fields:

• Effective address field—Determines the addressing mode for external operands.

If R/M = 1, this field specifies the location of the source operand, <ea>y. Only the
addressing modes listed in the following table can be used.

If R/M = 0, this field is unused and must be all zeros.

• R/M field—Specifies the source operand address mode.

— 1: The operation is <ea>y to register.

— 0: The operation is register to register.

• Source Specifier field—Specifies the source register or data format.

If R/M = 1, specifies the source data format. See Table 7-6.

If R/M = 0, specifies the source floating-point data register, FPy.

• Destination register field—Specifies the destination floating-point register, FPx.

• Opmode field—Specifies the instruction and rounding precision.

Addressing Mode Mode Register Addressing Mode Mode Register

Dy1

1 Only if format is byte, word, longword or single-precision.

000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay # <data> — —

(Ay)+ 011 reg. number:Ay

–(Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) — — (d8,PC,Xi) — —

Opmode Instruction Rounding Precision

0101000 FSUB Rounding precision specified by the FPCR
1101000 FSSUB Single-precision rounding
1101100 FDSUB Double-precision rounding
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-41

Instruction Descriptions
FTST Test Floating-Point Operand FTST

Operation: Source Operand Tested → FPCC

Assembler syntax: FTST.fmt <ea>y
FTST.D FPy

Attributes: Format = byte, word, longword, single-precision, double-precision

Description: Converts the source operand to double-precision (if necessary) and sets the
condition code bits according to the data type of the result. Note that for denormalized
operands, FPCC[Z] is set because denormalized numbers are normally treated as zero.
When Z is set, INEX is set if the operand is a denormalized number (and IDE is disabled).
INEX is cleared if the operand is exactly zero.

Note that the operation table differs from other operation tables. A letter in a table entry
indicates that FTST always sets the designated condition code bit. All unspecified condition
code bits are cleared during the operation.

FPSR[FPCC]: See Section 7.2, “Conditional Testing.”

FPSR[AEXC]: See Section 7.1, “Floating-Point Status Register (FPSR)”

Operation
Table:

Destination
Source1

1 If the source operand is a NAN, refer to Section 1.7.1.4, “Not-A-Number.”

+ In Range - + Zero - + Infinity -

Result none N Z NZ I NI

FPSR
[EXC]:

BSUN INAN IDE OPERR OVFL UNFL DZ INEX

0 See Table 7-2 0 0 0 0 Set if denormalized and IDE is
disabled; cleared otherwise

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

0 1 1 1 0 1 0
7-42 ColdFire Family Programmer’s Reference Manual

Instruction Descriptions
FTST Test Floating-Point Operand FTST

Instruction fields:

• Effective address field—Determines the addressing mode for external operands.

If R/M = 1, this field specifies the source operand location, <ea>y. Only modes in
the following table can be used.

If R/M = 0, this field is unused and must be all zeros.

• R/M field—Specifies the source operand address mode.

— 1: The operation is <ea>y to register.

— 0: The operation is register to register.

• Source specifier field—Specifies the source register or data format.

— If R/M = 1, specifies the source data format. See Table 7-6.

— If R/M = 0, specifies the source floating-point data register, FPx.

• Destination register field—FTST uses the command word format used by all FPU
arithmetic instructions but ignores and does not overwrite the register specified by
this field. This field should be cleared for compatibility with future devices;
however, because this field is ignored for the FTST instruction, the FPU does not
signal an exception if the field is not zero.

Addressing Mode Mode Register Addressing Mode Mode Register

Dy1

1 Only if format is byte, word, longword or single-precision.

000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay # <data> — —

(Ay)+ 011 reg. number:Ay

–(Ay) 100 reg. number:Ay

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) — — (d8,PC,Xi) — —
Chapter 7. Floating-Point Unit (FPU) User Instructions 7-43

Instruction Descriptions
7-44 ColdFire Family Programmer’s Reference Manual

Chapter 8
Supervisor (Privileged) Instructions
This section contains information about the supervisor (privileged) instructions for the
ColdFire Family. Each instruction is described in detail with the instruction descriptions
arranged in alphabetical order by instruction mnemonic. Supervisor instructions for
optional core modules (for example, the floating-point unit) are also detailed in this section.

Not all instructions are supported by all ColdFire processors. The original ColdFire
Instruction Set Architecture, ISA_A, is supported by V2 and V3 cores. The V4 core
supports ISA_B, which encompasses all of ISA_A, extends the functionality of some
ISA_A instructions, and adds several new instructions. These extensions can be identified
by a table which appears at the end of each instruction description where there are ISA_B
differences.
Chapter 8. Supervisor (Privileged) Instructions 8-1

CPUSHL Push and Possibly CPUSHL
Invalidate Cache

(All ColdFire Processors)

Operation: If Supervisor State
Then if Data Valid and Modified

Push Cache Line
Then Invalidate Line if Programmed in CACR

Else Privilege Violation Exception

Assembler Syntax: CPUSHL dc,(Ax) data cache
CPUSHL ic,(Ax) instruction cache
CPUSHL bc,(Ax) both caches or unified cache

Attributes: Unsized

Description: Pushes a specified cache line if modified and invalidates it if programmed to
do so by CACR[DPI]. Care should be exercised when clearing lines from both caches if the
sizes of the caches are different. For example, using a device with a 16K instruction cache
and an 8K data cache, an address of 0x800 applied to both caches is referencing cache
address 0x80 of the instruction cache, but address 0x00 of the data cache. Note that this
instruction synchronizes the pipeline.

Condition Codes: Not affected

Instruction Fields:

• Cache — Specifies the affected cache as follows:

— 00 reserved

— 01 data cache (dc)

— 10 instruction cache (ic)

— 11 both caches or unified cache (bc); also use this encoding for a device which
has an instruction cache, but not a data cache

• Register, Ax — Specifies the address register defining the line within the cache to be
pushed or invalidated. Ax should be programmed as follows:

— Ax[4] is the lsb for the address field, which extends upward as required by the
given cache size. The algorithm for the size of the address field is as follows:

Range = Cache size in bytes / (Associativity * 16)
Using a 16K, 4 way set-associative cache as an example:

Range = 16384 / (4*16) = 256 = 28

Thus, the address range for this cache would be Ax[11:4]

— Ax[1:0] specify the cache way or level where the line is located.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 Cache 1 0 1 Register, Ax
8-2 ColdFire Family Programmer’s Reference Manual

FRESTORE Restore Internal FRESTORE
Floating-Point State

(ColdFire Processors with an FPU)

Operation: If in Supervisor State
Then FPU State Frame → Internal State

Else Privilege Violation Exception

Assembler syntax: FRESTORE <ea>y

Attributes: Unsized

Description: Aborts any floating-point operation and loads a new FPU internal state from
the state frame at the effective address. The frame format is specified in the byte at <ea>y,
and an internal exception vector is contained in the byte at <ea>y+1. If the frame format is
invalid, FRESTORE aborts and a format exception is generated (vector 14). If the format
is valid, the frame is loaded into the FPU, starting at the specified location and proceeding
through higher addresses.

FRESTORE ignores the vector specified in the byte at <ea>y+1 because all vectors are
generated from FPCR and FPSR exception bits. This vector is provided for the handler.

FRESTORE does not normally affect the FPU programming model except the NULL state
frame. It is generally used with FMOVEM to fully restore the FPU context including
floating-point data and system control registers. For complete restoration, FMOVEM first
loads the data registers, then FRESTORE loads the internal state, FPCR, and FPSR.
Table 8-1 lists supported state frames. If the frame format is not 0x00, 0x05, or 0xE5, the
processor responds with a format error exception, vector 14, and the internal FPU state is
unaffected.

FPSR: Cleared if NULL frame format; otherwise, loaded from state frame.

FPCR: Cleared if NULL frame format; otherwise, loaded from state frame.

FPIAR: Cleared if NULL frame format; otherwise unchanged.

Table 8-1. State Frames

State Format Description

NULL 0x00 FRESTORE of this state frame is like a hardware reset of the FPU. The programmer’s model enters
reset state, with NANs in floating-point data registers and zeros in FPCR, FPSR, and FPIAR.

IDLE 0x05 A FRESTORE of the IDLE or EXCP state frame yields the same results. The FPU is restored to idle
state, waiting for initiation of the next instruction, with no exceptions pending. However, if an
FPSR[EXC] bit and corresponding FPCR enable bit are set, the FPU enters exception state. In this
state, initiating a floating-point instruction other than FSAVE, FMOVEM, FMOVE of system
registers, or another FRESTORE causes a pending exception. The programmer’s model is
unaffected by loading this type of state frame (except FPSR and FPCR are loaded from the state
frame).

EXCP 0xE5
Chapter 8. Supervisor (Privileged) Instructions 8-3

FRESTORE Restore Internal FRESTORE
Floating-Point State

Floating-point data registers: Set to NANs if NULL frame format; otherwise, unaffected.

Instruction field:

• Source Effective Address field—Specifies the addressing mode, <ea>y, for the state
frame. Only modes in the following table can be used.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 1 Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy — — (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay # <data> — —

(Ay)+ — —

–(Ay) — —

(d16,Ay) 101 reg. number:Ay (d16,PC) 111 010

(d8,Ay,Xi) — — (d8,PC,Xi) — —
8-4 ColdFire Family Programmer’s Reference Manual

FSAVE Save Internal FSAVE
Floating-Point State

(ColdFire Processors with an FPU)

Operation: If in Supervisor State
Then FPU Internal State → <ea>x

Else Privilege Violation Exception

Assembler syntax: FSAVE <ea>x

Attributes: Unsized

Description: After allowing completion of any floating-point operation in progress,
FSAVE saves the FPU internal state in a frame at the effective address. After a save
operation, FPCR is cleared and the FPU is in idle state until the next instruction executes.
The first longword written to the state frame includes the format field data. Floating-point
operations in progress when an FSAVE is encountered complete before FSAVE executes,
which then creates an IDLE state frame if no exceptions occurred; otherwise, an EXCP
state frame is created. State frames in Table 8-2 apply.

FSAVE does not save FPU programming model registers. It can be used with FMOVEM to
perform a full context save of the FPU that includes floating-point data and system control
registers. For a complete context save, first execute FSAVE to save the internal state, then
execute the appropriate FMOVEM to store the data registers. FPCR and FPSR are saved as
part of the FSAVE state frame. Furthermore, FPCR is cleared at the end of the FSAVE,
preventing further exceptions if the handler includes floating-point instructions.

FPSR: Not affected

FPCR: Cleared

Table 8-2. State Frames

State Description

NULL An FSAVE generating this state frame indicates the FPU state was not modified because the last processor
reset or FRESTORE with a NULL state frame. This indicates that the programmer’s model is in reset state,
with NANs in floating-point data registers and zeros in FPCR, FPSR, and FPIAR. Stores of the system
registers, FSAVE, and FMOVEM stores do not cause the FPU change from NULL to another state.

IDLE An FSAVE that generates this state frame indicates the FPU finished in an idle condition and is without
pending exceptions waiting for the initiation of the next instruction.

EXCP An FSAVE generates this state frame if any FPSR[EXC] bits and corresponding FPCR exception enable bits
are set. This state typically indicates the FPU encountered an exception while attempting to complete
execution of a previous floating-point instruction.
Chapter 8. Supervisor (Privileged) Instructions 8-5

FSAVE Save Internal FSAVE
Floating-Point State

Instruction field:

• Effective address field—Specifies the addressing mode, <ea>x for the state frame.
Only modes in the following table can be used.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 0 Destination Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dx — — (xxx).W — —

Ax — — (xxx).L — —

(Ax) 010 reg. number:Ax # <data> — —

(Ax)+ — —

–(Ax) — —

(d16,Ax) 101 reg. number:Ax (d16,PC) — —

(d8,Ax,Xi) — — (d8,PC,Xi) — —
8-6 ColdFire Family Programmer’s Reference Manual

HALT Halt the CPU HALT
(All ColdFire Processors)

Operation: If Supervisor State
Then Halt the Processor Core

Else Privilege Violation Exception

Assembler Syntax: HALT

Attributes: Unsized

Description: The processor core is synchronized (meaning all previous instructions and
bus cycles are completed) and then halts operation. The processor’s halt status is signaled
on the processor status output pins (PST=0xF). If a GO debug command is received, the
processor resumes execution at the next instruction. Note that this instruction synchronizes
the pipeline. The opcode for HALT is 0x4AC8.

Note that setting CSR[UHE] through the debug module allows HALT to be executed in user
mode.

Condition Codes: Not affected

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 0
Chapter 8. Supervisor (Privileged) Instructions 8-7

INTOUCH Instruction Fetch Touch INTOUCH
(Supported Starting with V4)

Operation: If Supervisor State
then Instruction Fetch Touch at (Ay)

else Privilege Violation Exception

Assembler Syntax: INTOUCH (Ay)

Attributes: Unsized

Description: Generates an instruction fetch reference at address (Ay). If the referenced
address space is a cacheable region, this instruction can be used to prefetch a 16-byte packet
into the processor’s instruction cache. If the referenced instruction address is a
non-cacheable space, the instruction effectively performs no operation. Note that this
instruction synchronizes the pipeline.

The INTOUCH instruction can be used to prefetch, and with the later programming of
CACR, lock specific memory lines in the processor’s instruction cache. This function may
be desirable in systems where deterministic real-time performance is critical.

Condition Codes: Not affected.

Instruction Fields:

• Register field—Specifies the source address register, Ay.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 0 1 0 1 Register, Ay

INTOUCH V2, V3 Core (ISA_A) V4 Core (ISA_B)

Opcode present No Yes

Operand sizes supported — —
8-8 ColdFire Family Programmer’s Reference Manual

MOVE MOVE
from SR Move from the Status Register from SR

(All ColdFire Processors)

Operation: If Supervisor State
Then SR → Destination

Else Privilege Violation Exception

Assembler Syntax: MOVE.W SR,Dx

Attributes: Size = word

Description: Moves the data in the status register to the destination location. The
destination is word length. Unimplemented bits are read as zeros.

Condition Codes: Not affected

Instruction Field:

• Register field—Specifies the destination data register, Dx.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 1 1 0 0 0 Register, Dx
Chapter 8. Supervisor (Privileged) Instructions 8-9

MOVE MOVE
from USP Move from User Stack Pointer from USP

(Supported Starting with V4)

Operation: If Supervisor State
Then USP → Destination

Else Privilege Violation Exception

Assembler Syntax: MOVE.L USP,Ax

Attributes: Size = longword

Description: Moves the contents of the user stack pointer to the specified address register.
If execution of this instruction is attempted on a V2 or V3 device, or on the MCF5407, an
illegal instruction exception will be taken. This instruction will execute correctly on other
V4 devices if CACR[EUSP] is set.

Condition Codes: Not affected

Instruction Field:

• Register field—Specifies the destination address register, Ax.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 0 1 Register, Ax

MOVE from USP V2, V3 Core (ISA_A) V4 Core (ISA_B)

Opcode present No Yes

Operand sizes supported — L
8-10 ColdFire Family Programmer’s Reference Manual

MOVE MOVE
to SR Move to the Status Register to SR

(All ColdFire Processors)

Operation: If Supervisor State
Then Source → SR

Else Privilege Violation Exception

Assembler Syntax: MOVE.W <ea>y,SR

Attributes: Size = word

Description: Moves the data in the source operand to the status register. The source
operand is a word, and all implemented bits of the status register are affected. Note that this
instruction synchronizes the pipeline.

Instruction Field:

• Effective Address field—Specifies the location of the source operand; use only those
data addressing modes listed in the following table:

Condition
Codes:

X N Z V C X Set to the value of bit 4 of the source operand
N Set to the value of bit 3 of the source operand
Z Set to the value of bit 2 of the source operand
V Set to the value of bit 1 of the source operand
C Set to the value of bit 0 of the source operand

∗ ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 0 1 1 Source Effective Address

Mode Register

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (xxx).W — —

Ay — — (xxx).L — —

(Ay) — — #<data> 111 100

(Ay) + — —

– (Ay) — —

(d16,Ay) — — (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
Chapter 8. Supervisor (Privileged) Instructions 8-11

MOVE MOVE
to USP Move to User Stack Pointer to USP

(Supported Starting with V4)

Operation: If Supervisor State
Then Source → USP

Else Privilege Violation Exception

Assembler Syntax: MOVE.L Ay,USP

Attributes: Size = longword

Description: Moves the contents of an address register to the user stack pointer. If
execution of this instruction is attempted on a V2 or V3 device, or on the MCF5407, an
illegal instruction exception will be taken. This instruction will execute correctly on other
V4 devices if CACR[EUSP] is set.

Condition Codes: Not affected

Instruction Field:

• Register field—Specifies the source address register, Ay.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 0 0 Register, Ay

MOVE to USP V2, V3 Core (ISA_A) V4 Core (ISA_B)

Opcode present No Yes

Operand sizes supported — L
8-12 ColdFire Family Programmer’s Reference Manual

MOVEC Move Control Register MOVEC
(All ColdFire Processors)

Operation: If Supervisor State
Then Ry → Rc

Else Privilege Violation Exception

Assembler Syntax: MOVEC.L Ry,Rc

Attributes: Size = longword

Description: Moves the contents of the general-purpose register to the specified control
register. This transfer is always 32 bits even though the control register may be
implemented with fewer bits. Note that the control registers are write only. The on-chip
debug module can be used to read control registers. Note that this instruction synchronizes
the pipeline.

Not all control registers are implemented in every ColdFire processor design. Refer to the
user’s manual for a specific device to find out which registers are implemented. Attempted
access to undefined or unimplemented control register space produces undefined results.

Condition Codes: Not affected

Instruction Fields:

• A/D field—Specifies the type of source register, Ry:

— 0 data register

— 1 address register

• Register Ry field—Specifies the source register, Ry.

• Control Register Rc field—Specifies the control register affected using the values
shown in Table 8-3.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1

A/D Register, Ry Control Register, Rc
Chapter 8. Supervisor (Privileged) Instructions 8-13

MOVEC Move Control Register MOVEC

Table 8-3. ColdFire CPU Space Assignments

Name CPU Space Assignment Register Name

Memory Management Control Registers

CACR 0x002 Cache control register

ASID 0x003 Address space identifier register

ACR0 0x004 Access control registers 0

ACR1 0x005 Access control registers 1

ACR2 0x006 Access control registers 2

ACR3 0x007 Access control registers 3

MMUBAR 0x008 MMU base address register

Processor Miscellaneous Registers

VBR 0x801 Vector base register

PC 0x80F Program counter

Local Memory and Module Control Registers

ROMBAR0 0xC00 ROM base address register 0

ROMBAR1 0xC01 ROM base address register 1

RAMBAR0 0xC04 RAM base address register 0

RAMBAR1 0xC05 RAM base address register 1

MPCR 0xC0C Multiprocessor control register 1

1 Field definitions for these optional registers are implementation-specific.

EDRAMBAR 0xC0D Embedded DRAM base address register 1

SECMBAR 0xC0E Secondary module base address register 1

MBAR 0xC0F Primary module base address register

Local Memory Address Permutation Control Registers 1

PCR1U0 0xD02 32 msbs of RAM 0 permutation control register 1

PCR1L0 0xD03 32 lsbs of RAM 0 permutation control register 1

PCR2U0 0xD04 32 msbs of RAM 0 permutation control register 2

PCR2L0 0xD05 32 lsbs of RAM 0 permutation control register 2

PCR3U0 0xD06 32 msbs of RAM 0 permutation control register 3

PCR3L0 0xD07 32 lsbs of RAM 0 permutation control register 3

PCR1U1 0xD0A 32 msbs of RAM 1 permutation control register 1

PCR1L1 0xD0B 32 lsbs of RAM 1 permutation control register 1

PCR2U1 0xD0C 32 msbs of RAM 1 permutation control register 2

PCR2L1 0xD0D 32 lsbs of RAM 1 permutation control register 2

PCR3U1 0xD0E 32 msbs of RAM 1 permutation control register 3

PCR3L1 0xD0F 32 lsbs of RAM 1 permutation control register 3
8-14 ColdFire Family Programmer’s Reference Manual

RTE Return from Exception RTE
(All ColdFire Processors)

Operation: If Supervisor State
Then 2 + (SP) → SR; 4 + (SP) → PC; SP + 8 → SP
Adjust stack according to format

Else Privilege Violation Exception

Assembler Syntax: RTE

Attributes: Unsized

Description: Loads the processor state information stored in the exception stack frame
located at the top of the stack into the processor. The instruction examines the stack format
field in the format/offset word to determine how much information must be restored. Upon
returning from exception, the processor is in user mode if SR[S]=0 when it is loaded from
memory; otherwise, the processor remains in supervisor mode. Note that this instruction
synchronizes the pipeline. The opcode for RTE is 0x4E73.

Condition Codes: Set according to the condition code bits in the status register value
restored from the stack.

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1
Chapter 8. Supervisor (Privileged) Instructions 8-15

STOP Load Status Register and Stop STOP
(All ColdFire Processors)

Operation: If Supervisor State
Then Immediate Data → SR; STOP

Else Privilege Violation Exception

Assembler Syntax: STOP #<data>

Attributes: Unsized

Description: Moves the immediate word operand into the status register (both user and
supervisor portions), advances the program counter to point to the next instruction, and
stops the fetching and executing of instructions. A trace, interrupt, or reset exception causes
the processor to resume instruction execution. A trace exception occurs if instruction
tracing is enabled (T0 = 1) when the STOP instruction begins execution, or if bit 15 of the
immediate operand is a 1. If an interrupt request is asserted with a priority higher than the
priority level set by the new status register value, an interrupt exception occurs; otherwise,
the interrupt request is ignored. External reset always initiates reset exception processing.
The STOP command places the processor in a low-power state. Note that this instruction
synchronizes the pipeline. The opcode for STOP is 0x4E72, followed by the immediate
data.

Instruction Field:

• Immediate Data field—Specifies the data to be loaded into the status register.

Condition
Codes:

X N Z V C X Set to the value of bit 4 of the immediate data
N Set to the value of bit 3 of the immediate data
Z Set to the value of bit 2 of the immediate data
V Set to the value of bit 1 of the immediate data
C Set to the value of bit 0 of the immediate data

∗ ∗ ∗ ∗ ∗

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0

Immediate Data
8-16 ColdFire Family Programmer’s Reference Manual

WDEBUG Write Debug Control Register WDEBUG
(All ColdFire Processors)

Operation: If Supervisor State
Then Write Control Register Command Executed in Debug
Module

Else Privilege Violation Exception

Assembler Syntax: WDEBUG.L <ea>y

Attributes: Size = longword

Description: Fetches two consecutive longwords from the memory location defined by the
effective address. These operands are used by the ColdFire debug module to write one of
the debug control registers (DRc). Note that this instruction synchronizes the pipeline. The
memory location defined by the effective address must be longword aligned; otherwise
undefined operation results. The debug command must be organized in memory as shown
on the next page.

Condition Codes: Not affected

Instruction Field:

• Source Effective Address field—Specifies the address, <ea>y, for the operation; use
only the addressing modes listed in the following table:

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 Source Effective Address

Mode Register

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Addressing Mode Mode Register Addressing Mode Mode Register

Dy — — (xxx).W — —

Ay — — (xxx).L — —

(Ay) 010 reg. number:Ay #<data> — —

(Ay) + — —

– (Ay) — —

(d16,Ay) 101 reg. number:Ay (d16,PC) — —

(d8,Ay,Xi) — — (d8,PC,Xi) — —
Chapter 8. Supervisor (Privileged) Instructions 8-17

WDEBUG Write Debug Control Register WDEBUG

Debug Command Organization in Memory:

where:

• Bits [15:4] of the first word define the WDREG command to the debug module.

• Bits [3:0] of the first word define the specific control register, DRc, to write. The
table below contains DRc definitions. Note that some cores implement a subset of
the debug registers. Refer to a specific device or core user’s manual for more
information.

• Data[31:0] is the 32-bit operand to be written.

• The fourth word is unused.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 0 1 0 0 DRc

Data[31:16]

Data[15:0]

Unused

DRc[4–0] Register Name DRc[4–0] Register Name

0x00 Configuration/status register 0x10–0x1 Reserved

0x01–0x0 Reserved 0x14 PC breakpoint ASID register

0x04 PC breakpoint ASID control 0x15 Reserved

0x05 BDM address attribute register 0x16 Address attribute trigger register 1

0x06 Address attribute trigger register 0x17 Extended trigger definition register

0x07 Trigger definition register 0x18 Program counter breakpoint 1 register

0x08 Program counter breakpoint register 0x19 Reserved

0x09 Program counter breakpoint mask
register

0x1A Program counter breakpoint register 2

0x0A–0x0B Reserved 0x1B Program counter breakpoint register 3

0x0C Address breakpoint high register 0x1C Address high breakpoint register 1

0x0D Address breakpoint low register 0x1D Address low breakpoint register 1

0x0E Data breakpoint register 0x1E Data breakpoint register 1

0x0F Data breakpoint mask register 0x1F Data breakpoint mask register 1
8-18 ColdFire Family Programmer’s Reference Manual

Chapter 9
Instruction Format Summary
This chapter contains a numerical listing of the ColdFire family instructions in binary
format. Wherever the binary encoding for an entire nibble of an instruction is predefined,
the hex value for that nibble appears on the right side of the page, otherwise a dash (—) is
used to show that it is variable.

9.1 Operation Code Map
Table 9-1 lists the encoding for bits 15–12 and the operation performed.

Table 9-1. Operation Code Map

Bits 15–12 Hex Operation

0000 0 Bit Manipulation/Immediate

0001 1 Move Byte

0010 2 Move Longword

0011 3 Move Word

0100 4 Miscellaneous

0101 5 ADDQ/SUBQ/Scc/TPF

0110 6 Bcc/BSR/BRA

0111 7 MOVEQ/MVS/MVZ

1000 8 OR/DIV

1001 9 SUB/SUBX

1010 A MAC/EMAC instructions/MOV3Q

1011 B CMP/EOR

1100 C AND/MUL

1101 D ADD/ADDX

1110 E Shift

1111 F Floating-Point/Debug/Cache Instructions
Chapter 9. Instruction Format Summary 9-1

Operation Code Map
ORI 0x008–

BTST 0x0–––
Bit number dynamic, specified in a register

BCHG 0x0–––
Bit number dynamic, specified in a register

BCLR 0x0–––
Bit number dynamic, specified in a register

BSET 0x0–––
Bit number dynamic, specified in a register

ANDI 0x028–

SUBI 0x048–

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 Register, Dx

Upper Word of Immediate Data

Lower Word of Immediate Data

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 Data Register, Dy 1 0 0 Destination Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 Data Register, Dy 1 0 1 Destination Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 Data Register, Dy 1 1 0 Destination Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 Data Register, Dy 1 1 1 Destination Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 1 0 0 0 0 Register, Dx

Upper Word of Immediate Data

Lower Word of Immediate Data

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 0 1 0 0 0 0 Register, Dx

Upper Word of Immediate Data

Lower Word of Immediate Data
9-2 ColdFire Family Programmer’s Reference Manual

Operation Code Map
ADDI 0x068–

BTST 0x08–– 00––
Bit number static, specified as immediate data

BCHG 0x08–– 00––
Bit number static, specified as immediate data

BCLR 0x08–– 00––
Bit number static, specified as immediate data

BSET 0x08–– 00––
Bit number static, specified as immediate data

EORI 0x0A8–

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 0 1 0 0 0 0 Register, Dx

Upper Word of Immediate Data

Lower Word of Immediate Data

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 0 0 Destination Effective Address

Mode Register

0 0 0 0 0 0 0 0 Bit Number

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 0 1 Destination Effective Address

Mode Register

0 0 0 0 0 0 0 0 Bit Number

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 1 0 Destination Effective Address

Mode Register

0 0 0 0 0 0 0 0 Bit Number

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 1 1 Destination Effective Address

Mode Register

0 0 0 0 0 0 0 0 Bit Number

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 1 0 0 0 0 Register, Dx

Upper Word of Immediate Data

Lower Word of Immediate Data
Chapter 9. Instruction Format Summary 9-3

Operation Code Map
CMPI 0x0C––

MOVE 0x––––

MOVEA 0x––––

NEGX 0x408–

MOVE from SR 0x40C–

LEA 0x4–––

CLR 0x42––

MOVE from CCR 0x42C–

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 Size 0 0 0 Register, Dx

Upper Word of Immediate Data

Lower Word of Immediate Data

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 Size Destination Effective Address Source Effective Address

Register Mode Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 Size Destination
Register, Ax

0 0 1 Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 1 0 0 0 0 Register, Dx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 1 1 0 0 0 Register, Dx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 Register, Ax 1 1 1 Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 Size Destination Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 1 1 0 0 0 Register, Dx
9-4 ColdFire Family Programmer’s Reference Manual

Operation Code Map
NEG 0x448–

MOVE to CCR 0x44––

NOT 0x468–

MOVE to SR 0x46––

SWAP 0x484–

PEA 0x48––

EXT, EXTB 0x4–––

MOVEM 0x4–––

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 1 0 0 0 0 Register, Dx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 1 1 Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 0 1 0 0 0 0 Register, Dx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 0 1 1 Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 1 0 0 0 Register, Dx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 1 Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 Opmode 0 0 0 Register, Dx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 dr 0 0 1 1 Effective Address

Mode Register

Register List Mask
Chapter 9. Instruction Format Summary 9-5

Operation Code Map
TST 0x4A––

TAS 0x4A––

HALT 0x4AC8

PULSE 0x4ACC

ILLEGAL 0x4AFC

MULU.L 0x4C–– –000

MULS.L 0x4C–– –800

DIVU.L 0x4C–– –00–

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 Size Destination Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 1 1 Destination Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 0 Source Effective Address

Mode Register

0 Register, Dx 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 0 Source Effective Address

Mode Register

0 Register, Dx 1 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 1 Source Effective Address

Mode Register

0 Register, Dx 0 0 0 0 0 0 0 0 0 Register, Dx
9-6 ColdFire Family Programmer’s Reference Manual

Operation Code Map
REMU.L 0x4C–– –00–

DIVS.L 0x4C–– –80–

REMS.L 0x4C–– –80–

SATS 0x4C8–

TRAP 0x4E4–

LINK 0x4E5–

UNLK 0x4E5–

MOVE to USP 0x4E6–

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 1 Source Effective Address

Mode Register

0 Register, Dx 0 0 0 0 0 0 0 0 0 Register, Dw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 1 Source Effective Address

Mode Register

0 Register, Dx 1 0 0 0 0 0 0 0 0 Register, Dx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 1 Source Effective Address

Mode Register

0 Register, Dx 1 0 0 0 0 0 0 0 0 Register, Dw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1 0 0 0 0 Register, Dx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 0 0 Vector

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 0 1 0 Register, Ay

Word Displacement

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 0 1 1 Register, Ax

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 0 0 Register, Ay
Chapter 9. Instruction Format Summary 9-7

Operation Code Map
MOVE from USP 0x4E6–

NOP 0x4E71

STOP 0x4E72

RTE 0x4E73

RTS 0x4E75

MOVEC 0x4E7B

JSR 0x4E––

JMP 0x4E––

ADDQ 0x5–––

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 0 1 Register, Ax

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0

Immediate Data

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1

D/A Register, Ry Control Register, Rc

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 1 0 Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 1 1 Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 Data 0 1 0 Destination Effective Address

Mode Register
9-8 ColdFire Family Programmer’s Reference Manual

Operation Code Map
Scc 0x5–C–

SUBQ 0x5–––

TPF 0x51F–

BRA 0x60––

BSR 0x61––

Bcc 0x6–––

MOVEQ 0x7–––

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 Condition 1 1 0 0 0 Register, Dx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 Data 1 1 0 Destination Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 1 1 1 1 1 1 Opmode

Optional Immediate Word

Optional Immediate Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 8-bit displacement

16-bit displacement if 8-bit displacement = 0x00

32-bit displacement if 8-bit displacement = 0xFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 1 8-bit displacement

16-bit displacement if 8-bit displacement = 0x00

32-bit displacement if 8-bit displacement = 0xFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 Condition 8-bit displacement

16-bit displacement if 8-bit displacement = 0x00

32-bit displacement if 8-bit displacement = 0xFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 Register, Dx 0 Immediate Data
Chapter 9. Instruction Format Summary 9-9

Operation Code Map
MVS 0x7–––

MVZ 0x7–––

OR 0x8–––

DIVU.W 0x8–––

DIVS.W 0x8–––

SUB 0x9–––

SUBX 0x9–––

SUBA 0x9–––

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 Register, Dx 1 0 Size Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 Register, Dx 1 1 Size Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 Register Opmode Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 Register, Dx 0 1 1 Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 Register, Dx 1 1 1 Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 Register Opmode Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 Register, Dx 1 1 0 0 0 0 Register, Dy

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 Destination
Register, Ax

1 1 1 Source Effective Address

Mode Register
9-10 ColdFire Family Programmer’s Reference Manual

Operation Code Map
MAC (MAC) 0xA–––

MAC (EMAC) 0xA–––

MAC with load (MAC) 0xA–––

MAC with load (EMAC) 0xA–––

MSAC (MAC) 0xA–––

MSAC (EMAC) 0xA–––

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 Register, Rx 0 0 Rx 0 0 Register, Ry

— — — — sz Scale Factor 0 U/Lx U/Ly — — — — — —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 Register, Rx 0 ACC
lsb

Rx
msb

0 0 Register, Ry

— — — — sz Scale Factor 0 U/Lx U/Ly — ACC
msb

— — — —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 Register, Rw 0 1 Rw Source Effective Address

Mode Register

Register, Rx sz Scale Factor 0 U/Lx U/Ly Mask 0 Register, Ry

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 Register, Rw 0 ACC
lsb

Rw Source Effective Address

Mode Register

Register, Rx sz Scale Factor 0 U/Lx U/Ly Mask ACC
msb

Register, Ry

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 Register, Rx 0 0 Rx 0 0 Register, Ry

— — — — sz Scale Factor 1 U/Lx U/Ly — — — — — —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 Register, Rx 0 ACC
lsb

Rx
msb

0 0 Register, Ry

— — — — sz Scale Factor 1 U/Lx U/Ly — ACC
msb

— — — —
Chapter 9. Instruction Format Summary 9-11

Operation Code Map
MSAC with load (MAC) 0xA–––

MSAC with load (EMAC) 0xA–––

MOVE to ACC (MAC) 0xA1––

MOVE to ACC (EMAC) 0xA–––

MOVE ACC to ACC (EMAC) 0xA–1–

MOVE from ACC (MAC) 0xA18–

MOVE from ACC (EMAC) 0xA–8–

MOVCLR (EMAC) 0xA–C–

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 Register, Rw 0 1 Rw Source Effective Address

Mode Register

Register, Rx sz Scale Factor 1 U/Lx U/Ly Mask 0 Register, Ry

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 Register, Rw 0 ACC
lsb

Rw Source Effective Address

Mode Register

Register, Rx sz Scale Factor 1 U/Lx U/Ly Mask ACC
msb

Register, Ry

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 0 1 0 0 Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 ACC 1 0 0 Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 ACCx 1 0 0 0 1 0 0 ACCy

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 0 1 1 0 0 0 Register, Rx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 ACC 1 1 0 0 0 Register, Rx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 ACC 1 1 1 0 0 Register, Rx
9-12 ColdFire Family Programmer’s Reference Manual

Operation Code Map
MOVE from MACSR 0xA98–

MOVE to MACSR 0xA9––

MOVE from MACSR to CCR 0xA9C0

MOVE to ACCext01 (EMAC) 0xAB––

MOVE from ACCext01 (EMAC) 0xAB8–

MOVE to MASK 0xAD––

MOVE from MASK 0xAD8–

MOVE to ACCext23 (EMAC) 0xAF––

MOVE from ACCext23 (EMAC) 0xAF8–

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 1 1 0 0 0 Register, Rx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 1 0 0 Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 1 1 0 0 Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 1 1 1 0 0 0 Register, Rx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 0 1 0 0 Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 0 1 1 0 0 0 Register, Rx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 1 1 0 0 Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 1 1 1 0 0 0 Register, Rx
Chapter 9. Instruction Format Summary 9-13

Operation Code Map
MOV3Q 0xA–––

CMP 0xB–––

CMPA 0xB–––

EOR 0xB–––

AND 0xC–––

MULU.W 0xC–––

MULS.W 0xC–––

ADD 0xD–––

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 Immediate Data 1 0 1 Destination Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 Register, Dx Opmode Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 Destination
Register, Ax

Opmode Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 Register, Dy 1 1 0 Destination Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 Data Register Opmode Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 Register, Dx 0 1 1 Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 Register, Dx 1 1 1 Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 Register Opmode Effective Address

Mode Register
9-14 ColdFire Family Programmer’s Reference Manual

Operation Code Map
ADDX 0xD–8–

ADDA 0xD–––

ASL, ASR 0xE–––

LSL, LSR 0xE–––

FMOVE 0xF2––
Memory- and register-to-register operation (<ea>y,FPx; FPy,FPx)

FMOVE 0xF2–– –––0
Register-to-memory operation (FPy,<ea>x)

FINT 0xF2–– –––1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 Register, Dx 1 1 0 0 0 0 Register, Dy

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 Destination
Register, Ax

1 1 1 Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 Count or
Register, Dy

dr 1 0 i/r 0 0 Register, Dx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 Count or
Register, Dy

dr 1 0 i/r 0 1 Register, Dx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

Opmode
(0000000, 1000000, or 1000100)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Destination Effective Address

Mode Register

0 1 1 Destination Format Source
Register, FPy

0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

0 0 0 0 0 0 1
Chapter 9. Instruction Format Summary 9-15

Operation Code Map
FINTRZ 0xF2–– –––3

FSQRT 0xF2––

FABS 0xF2––

FNEG 0xF2––

FDIV 0xF2––

FADD 0xF2––

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

0 0 0 0 0 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

Opmode
(0000100, 1000001, or 1000101)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

Opmode
(0011000, 1011000, or 1011100)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

Opmode
(0011010, 1011010, or 1011110)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

Opmode
(0100000, 1100000, or 1100100)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

Opmode
(0100010, 1100010, or 1100110)
9-16 ColdFire Family Programmer’s Reference Manual

Operation Code Map
FMUL 0xF2––

FSUB 0xF2––

FCMP 0xF2–– –––8

FTST 0xF2–– –––A

FBcc 0xF2––

FMOVE to FPIAR 0xF2–– 8400

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

Opmode
(0100011, 1100011, or 1100111)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

Opmode
(0101000, 1101000, or 1101100)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

0 1 1 1 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

0 R/M 0 Source Specifier Destination
Register, FPx

0 1 1 1 0 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 Size Conditional Predicate

16-bit displacement or most significant word of 32-bit displacement

Least significant word of 32-bit displacement (if needed)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Chapter 9. Instruction Format Summary 9-17

Operation Code Map
FMOVE to FPSR 0xF2–– 8800

FMOVE to FPCR 0xF2–– 9000

FMOVE from FPIAR 0xF2–– A400

FMOVE from FPSR 0xF2–– A800

FMOVE from FPCR 0xF2–– B000

FMOVEM 0xF2–– –0––

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Source Effective Address

Mode Register

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Destination Effective Address

Mode Register

1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Destination Effective Address

Mode Register

1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Destination Effective Address

Mode Register

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0 Effective Address

Mode Register

1 1 dr 1 0 0 0 0 Register List
9-18 ColdFire Family Programmer’s Reference Manual

Operation Code Map
FNOP 0xF280 0000

FSAVE 0xF3––

FRESTORE 0xF3––

INTOUCH 0xF42–

CPUSHL 0xF4––

WDDATA 0xFB––

WDEBUG 0xFB–– 0003

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 0 Destination Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 1 Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 0 1 0 1 Register, Ax

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 Cache 1 0 1 Register, Ax

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 Size Source Effective Address

Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 Source Effective Address

Mode Register

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
Chapter 9. Instruction Format Summary 9-19

Operation Code Map
9-20 ColdFire Family Programmer’s Reference Manual

Chapter 10
PST/DDATA Encodings
This chapter specifies the ColdFire processor and debug module’s generation of the
processor status (PST) and debug data (DDATA) output on an instruction basis. In general,
the PST/DDATA output for an instruction is defined as follows:

PST = 0x1, {PST = {0x8,0x9,0xB}, DDATA= operand}

where the {...} definition is optional operand information defined by the setting of the CSR.

The CSR provides capabilities to display operands based on reference type (read, write, or
both). A PST value {0x8, 0x9, or 0xB} identifies the size and presence of valid data to
follow on the DDATA output {1, 2, or 4 bytes}. Additionally, for certain change-of-flow
branch instructions, CSR[BTB] provides the capability to display the target instruction
address on the DDATA output {2, 3, or 4 bytes} using a PST value of {0x9, 0xA, or 0xB}.

For V2 and V3 devices, PST and DDATA are separate ports; and real-time trace information
is displayed on both ports concurrently. Starting with V4, the PST and DDATA outputs are
combined into a single port. Real-time trace information appears as a sequence of 4-bit data
values with no alignment restrictions; that is, the processor status (PST) values and
operands (DDATA) may appear on either nibble of PSTDDATA[7:0]. The upper nibble
(PSTDDATA[7:4]) is the most significant and yields values first. Note that the combined
PSTDDATA output still displays processor status and debug data in a manner that is
compatible with the displays generated with the separate PST and DDATA outputs. For
further information, refer to the debug section of a device or core user’s manual.

Note that not all instructions are implemented on all cores and devices. Refer to Chapter 12,
“Processor Instruction Summary,” for further information.

10.1 User Instruction Set
Table 10-1 shows the PST/DDATA specification for user-mode instructions. Rn represents
any {Dn, An} register. The ‘y’ suffix denotes the source and ‘x’ denotes the destination
operand. For a given instruction, the optional operand data is displayed only for those
effective addresses referencing memory. The ‘DD’ nomenclature refers to the DDATA
outputs.
Chapter 10. PST/DDATA Encodings 10-1

User Instruction Set
Table 10-1. PST/DDATA Specification for User-Mode Instructions

Instruction Operand Syntax PST/DDATA

add.l <ea>y,Dx PST = 0x1, {PST = 0xB, DD = source operand}

add.l Dy,<ea>x PST = 0x1, {PST = 0xB, DD = source}, {PST = 0xB, DD = destination}

adda.l <ea>y,Ax PST = 0x1, {PST = 0xB, DD = source operand}

addi.l #<data>,Dx PST = 0x1

addq.l #<data>,<ea>x PST = 0x1, {PST = 0xB, DD = source}, {PST = 0xB, DD = destination}

addx.l Dy,Dx PST = 0x1

and.l <ea>y,Dx PST = 0x1, {PST = 0xB, DD = source operand}

and.l Dy,<ea>x PST = 0x1, {PST = 0xB, DD = source}, {PST = 0xB, DD = destination}

andi.l #<data>,Dx PST = 0x1

asl.l {Dy,#<data>},Dx PST = 0x1

asr.l {Dy,#<data>},Dx PST = 0x1

bcc.{b,w,l} if taken, then PST = 0x5, else PST = 0x1

bchg.{b,l} #<data>,<ea>x PST = 0x1, {PST = 0x8, DD = source}, {PST = 0x8, DD = destination}

bchg.{b,l} Dy,<ea>x PST = 0x1, {PST = 0x8, DD = source}, {PST = 0x8, DD = destination}

bclr.{b,l} #<data>,<ea>x PST = 0x1, {PST = 0x8, DD = source}, {PST = 0x8, DD = destination}

bclr.{b,l} Dy,<ea>x PST = 0x1, {PST = 0x8, DD = source}, {PST = 0x8, DD = destination}

bra.{b,w,l} PST = 0x5

bset.{b,l} #<data>,<ea>x PST = 0x1, {PST = 0x8, DD = source}, {PST = 0x8, DD = destination}

bset.{b,l} Dy,<ea>x PST = 0x1, {PST = 0x8, DD = source}, {PST = 0x8, DD = destination}

bsr.{b,w,l} PST = 0x5, {PST = 0xB, DD = destination operand}

btst.{b,l} #<data>,<ea>x PST = 0x1, {PST = 0x8, DD = source operand}

btst.{b,l} Dy,<ea>x PST = 0x1, {PST = 0x8, DD = source operand}

clr.b <ea>x PST = 0x1, {PST = 0x8, DD = destination operand}

clr.l <ea>x PST = 0x1, {PST = 0xB, DD = destination operand}

clr.w <ea>x PST = 0x1, {PST = 0x9, DD = destination operand}

cmp.b <ea>y,Dx PST = 0x1, {0x8, source operand}

cmp.l <ea>y,Dx PST = 0x1, {PST = 0xB, DD = source operand}

cmp.w <ea>y,Dx PST = 0x1, {0x9, source operand}

cmpa.l <ea>y,Ax PST = 0x1, {PST = 0xB, DD = source operand}

cmpa.w <ea>y,Ax PST = 0x1, {0x9, source operand}

cmpi.b #<data>,Dx PST = 0x1

cmpi.l #<data>,Dx PST = 0x1

cmpi.w #<data>,Dx PST = 0x1

divs.l <ea>y,Dx PST = 0x1, {PST = 0xB, DD = source operand}

divs.w <ea>y,Dx PST = 0x1, {PST = 0x9, DD = source operand}

divu.l <ea>y,Dx PST = 0x1, {PST = 0xB, DD = source operand}
10-2 ColdFire Family Programmer’s Reference Manual

User Instruction Set
divu.w <ea>y,Dx PST = 0x1, {PST = 0x9, DD = source operand}

eor.l Dy,<ea>x PST = 0x1, {PST = 0xB, DD = source}, {PST = 0xB, DD = destination}

eori.l #<data>,Dx PST = 0x1

ext.l Dx PST = 0x1

ext.w Dx PST = 0x1

extb.l Dx PST = 0x1

illegal PST = 0x11

jmp <ea>y PST = 0x5, {PST = {0x9,0xA,0xB}, DD = target address} 2

jsr <ea>y PST = 0x5, {PST = {0x9,0xA,0xB}, DD = target address},
{PST = 0x B , DD = destination operand}2

lea.l <ea>y,Ax PST = 0x1

link.w Ay,#<displacement> PST = 0x1, {PST = 0xB, DD = destination operand}

lsl.l {Dy,#<data>},Dx PST = 0x1

lsr.l {Dy,#<data>},Dx PST = 0x1

mov3q.l #<data>,<ea>x PST = 0x1, {0xB, destination operand}

move.b <ea>y,<ea>x PST = 0x1, {PST = 0x8, DD = source}, {PST = 0x8, DD = destination}

move.l <ea>y,<ea>x PST = 0x1, {PST = 0xB, DD = source}, {PST = 0xB, DD = destination}

move.w <ea>y,<ea>x PST = 0x1, {PST = 0x9, DD = source}, {PST = 0x9, DD = destination}

move.w CCR,Dx PST = 0x1

move.w {Dy,#<data>},CCR PST = 0x1

movea.l <ea>y,Ax PST = 0x1, {PST = 0xB, DD = source}

movea.w <ea>y,Ax PST = 0x1, {PST = 0x9, DD = source}

movem.l #list,<ea>x PST = 0x1, {PST = 0xB, DD = destination},... 3

movem.l <ea>y,#list PST = 0x1, {PST = 0xB, DD = source},... 3

moveq.l #<data>,Dx PST = 0x1

muls.l <ea>y,Dx PST = 0x1, {PST = 0xB, DD = source operand}

muls.w <ea>y,Dx PST = 0x1, {PST = 0x9, DD = source operand}

mulu.l <ea>y,Dx PST = 0x1, {PST = 0xB, DD = source operand}

mulu.w <ea>y,Dx PST = 0x1, {PST = 0x9, DD = source operand}

mvs.b <ea>y,Dx PST = 0x1, {0x8, source operand}

mvs.w <ea>y,Dx PST = 0x1, {0x9, source operand}

mvz.b <ea>y,Dx PST = 0x1, {0x8, source operand}

mvz.w <ea>y,Dx PST = 0x1, {0x9, source operand}

neg.l Dx PST = 0x1

negx.l Dx PST = 0x1

nop PST = 0x1

Table 10-1. PST/DDATA Specification for User-Mode Instructions (Continued)

Instruction Operand Syntax PST/DDATA
Chapter 10. PST/DDATA Encodings 10-3

User Instruction Set
not.l Dx PST = 0x1

or.l <ea>y,Dx PST = 0x1, {PST = 0xB, DD = source operand}

or.l Dy,<ea>x PST = 0x1, {PST = 0xB, DD = source}, {PST = 0xB, DD = destination}

ori.l #<data>,Dx PST = 0x1

pea.l <ea>y PST = 0x1, {PST = 0xB, DD = destination operand}

pulse PST = 0x4

rems.l <ea>y,Dw:Dx PST = 0x1, {PST = 0xB, DD = source operand}

remu.l <ea>y,Dw:Dx PST = 0x1, {PST = 0xB, DD = source operand}

rts PST = 0x1, PST = 0x5, {{0x9,0xA,0xB}, target address} PST = 0x1,
{PST = 0xB, DD = source operand},
PST = 0x5, {PST = {0x9,0xA,0xB}, DD = target address}

sats.l Dx PST = 0x1

scc.b Dx PST = 0x1

sub.l <ea>y,Dx PST = 0x1, {PST = 0xB, DD = source operand}

sub.l Dy,<ea>x PST = 0x1, {PST = 0xB, DD = source}, {PST = 0xB, DD = destination}

suba.l <ea>y,Ax PST = 0x1, {PST = 0xB, DD = source operand}

subi.l #<data>,Dx PST = 0x1

subq.l #<data>,<ea>x PST = 0x1, {PST = 0xB, DD = source}, {PST = 0xB, DD = destination}

subx.l Dy,Dx PST = 0x1

swap.w Dx PST = 0x1

tas.b <ea>x PST = 0x1, {0x8, source}, {0x8, destination}

tpf PST = 0x1

tpf.l #<data> PST = 0x1

tpf.w #<data> PST = 0x1

trap #<data> PST = 0x11

tst.b <ea>x PST = 0x1, {PST = 0x8, DD = source operand}

tst.l <ea>y PST = 0x1, {PST = 0xB, DD = source operand}

tst.w <ea>y PST = 0x1, {PST = 0x9, DD = source operand}

unlk Ax PST = 0x1, {PST = 0xB, DD = destination operand}

wddata.b <ea>y PST = 0x4, {PST = 0x8, DD = source operand

wddata.l <ea>y PST = 0x4, {PST = 0xB, DD = source operand

wddata.w <ea>y PST = 0x4, {PST = 0x9, DD = source operand

Table 10-1. PST/DDATA Specification for User-Mode Instructions (Continued)

Instruction Operand Syntax PST/DDATA
10-4 ColdFire Family Programmer’s Reference Manual

User Instruction Set
Table 10-2 shows the PST specification for multiply-accumulate instructions.

1 During normal exception processing, the PST output is driven to a 0xC indicating the exception
processing state. The exception stack write operands, as well as the vector read and target address of
the exception handler may also be displayed.
Exception Processing PST = 0xC, {PST = 0xB,DD = destination}, // stack frame

{PST = 0xB,DD = destination}, // stack frame
{PST = 0xB,DD = source}, // vector read

PST = 0x5, {PST = [0x9AB],DD = target} // handler PC

The PST/DDATA specification for the reset exception is shown below:
Exception Processing PST = 0xC,

PST = 0x5, {PST = [0x9AB],DD = target} // handler PC

The initial references at address 0 and 4 are never captured nor displayed since these accesses are
treated as instruction fetches.
For all types of exception processing, the PST = 0xC value is driven at all times, unless the PST output
is needed for one of the optional marker values or for the taken branch indicator (0x5).

2 For JMP and JSR instructions, the optional target instruction address is displayed only for those
effective address fields defining variant addressing modes. This includes the following <ea>x values:
(An), (d16,An), (d8,An,Xi), (d8,PC,Xi).

3 For Move Multiple instructions (MOVEM), the processor automatically generates line-sized transfers if
the operand address reaches a 0-modulo-16 boundary and there are four or more registers to be
transferred. For these line-sized transfers, the operand data is never captured nor displayed, regardless
of the CSR value.
The automatic line-sized burst transfers are provided to maximize performance during these sequential
memory access operations.

Table 10-2. PST/DDATA Values for User-Mode
Multiply-Accumulate Instructions

Instruction Operand Syntax PST/DDATA

mac.l Ry,Rx PST = 0x1

mac.l Ry,Rx,<ea>y,Rw,ACCx PST = 0x1, {PST = 0xB, DD = source operand}

mac.l Ry,Rx,ACCx PST = 0x1

mac.l Ry,Rx,ea,Rw PST = 0x1, {PST = 0xB, DD = source operand}

mac.w Ry,Rx PST = 0x1

mac.w Ry,Rx,<ea>y,Rw,ACCx PST = 0x1, {PST = 0xB, DD = source operand}

mac.w Ry,Rx,ACCx PST = 0x1

mac.w Ry,Rx,ea,Rw PST = 0x1, {PST = 0xB, DD = source operand}

move.l {Ry,#<data>},ACCext01 PST = 0x1

move.l {Ry,#<data>},ACCext23 PST = 0x1

move.l {Ry,#<data>},ACCx PST = 0x1

move.l {Ry,#<data>},MACSR PST = 0x1

move.l {Ry,#<data>},MASK PST = 0x1

move.l ACCext01,Rx PST = 0x1

move.l ACCext23,Rx PST = 0x1

move.l ACCy,ACCx PST = 0x1

move.l ACCy,Rx PST = 0x1
Chapter 10. PST/DDATA Encodings 10-5

User Instruction Set
Table 10-3 shows the PST/DDATA specification for floating-point instructions; note that
<ea>y includes FPy, Dy, Ay, and <mem>y addressing modes. The optional operand capture
and display applies only to the <mem>y addressing modes. Note also that the PST/DDATA
values are the same for a given instruction, regardless of explicit rounding precision.

move.l MACSR,CCR PST = 0x1

move.l MACSR,Rx PST = 0x1

move.l MASK,Rx PST = 0x1

msac.l Ry,Rx PST = 0x1

msac.l Ry,Rx,<ea>y,Rw,ACCx PST = 0x1, {PST = 0xB, DD = source operand}

msac.l Ry,Rx,ACCx PST = 0x1

msac.l Ry,Rx,<ea>y,Rw PST = 0x1, {PST = 0xB, DD = source},
{PST = 0xB, DD = destination}

msac.w Ry,Rx PST = 0x1

msac.w Ry,Rx,<ea>y,Rw,ACCx PST = 0x1, {PST = 0xB, DD = source operand}

msac.w Ry,Rx,ACCx PST = 0x1

msac.w Ry,Rx,<ea>y,Rw PST = 0x1, {PST = 0xB, DD = source},
{PST = 0xB, DD = destination}

Table 10-3. PST/DDATA Values for User-Mode
Floating-Point Instructions

Instruction Operand Syntax PST/DDATA

fabs.sz <ea>y,FPx PST = 0x1, [89B], source}

fadd.sz <ea>y,FPx PST = 0x1, [89B], source}

fbcc.{w,l} <label> if taken, then PST = 5, else PST = 0x1

fcmp.sz <ea>y,FPx PST = 0x1, [89B], source}

fdiv.sz <ea>y,FPx PST = 0x1, [89B], source}

fint.sz <ea>y,FPx PST = 0x1, [89B], source}

fintrz.sz <ea>y,FPx PST = 0x1, [89B], source}

fmove.sz <ea>y,FPx PST = 0x1, [89B], source}

fmove.sz FPy,<ea>x PST = 0x1, [89B], destination}

fmove.l <ea>y,FP*R1 PST = 0x1, B, source}

fmove.l FP*R,<ea>x1 PST = 0x1, B, destination}

fmovem <ea>y,#list PST = 0x1

fmovem #list,<ea>x PST = 0x1

fmul.sz <ea>y,FPx PST = 0x1, [89B], source}

Table 10-2. PST/DDATA Values for User-Mode
Multiply-Accumulate Instructions (Continued)

Instruction Operand Syntax PST/DDATA
10-6 ColdFire Family Programmer’s Reference Manual

Supervisor Instruction Set
Depending on the size of any external memory operand specified by the f<op>.fmt field,
the data marker is defined as shown in Table 10-4

10.2 Supervisor Instruction Set
The supervisor instruction set has complete access to the user mode instructions plus the
opcodes shown below. The PST/DDATA specification for these opcodes is shown in
Table 10-5.

fneg.sz <ea>y,FPx PST = 0x1, [89B], source}

fnop PST = 0x1

fsqrt.sz <ea>y,FPx PST = 0x1, [89B], source}

fsub.sz <ea>y,FPx PST = 0x1, [89B], source}

ftst.sz <ea>y PST = 0x1, [89B], source}

1 The FP*R notation refers to the floating-point control registers: FPCR, FPSR, and
FPIAR.

Table 10-4. Data Markers and FPU Operand Format Specifiers

Format Specifier Data Marker

.b 8

.w 9

.l B

.s B

.d Never captured

Table 10-5. PST/DDATA Specifications for
Supervisor-Mode Instructions

Instruction Operand Syntax PST/DDATA

cpushl dc,(Ax)
ic,(Ax)
bc,(Ax)

PST = 0x1

frestore <ea>y PST = 0x1

fsave <ea>x PST = 0x1

halt PST = 0x1,
PST = 0xF

intouch (Ay) PST = 0x1

move.l Ay,USP PST = 0x1

move.l USP,Ax PST = 0x1

Table 10-3. PST/DDATA Values for User-Mode
Floating-Point Instructions (Continued)

Instruction Operand Syntax PST/DDATA
Chapter 10. PST/DDATA Encodings 10-7

Supervisor Instruction Set
The move-to-SR and RTE instructions include an optional PST = 0x3 value, indicating an
entry into user mode. Additionally, if the execution of a RTE instruction returns the
processor to emulator mode, a multiple-cycle status of 0xD is signaled.

Similar to the exception processing mode, the stopped state (PST = 0xE) and the halted
state (PST = 0xF) display this status throughout the entire time the ColdFire processor is in
the given mode.

move.w SR,Dx PST = 0x1

move.w {Dy,#<data>},SR PST = 0x1, {PST = 0x3}

movec.l Ry,Rc PST = 0x1, {8, ASID}

rte PST = 0x7, {PST = 0xB, DD = source operand}, {PST = 3}
{ PST = 0xB, DD = source operand}, {DD},
PST = 0x5, {[PST = 0x9AB], DD = target address}

stop #<data> PST = 0x1,
PST = 0xE

wdebug.l <ea>y PST = 0x1, {PST = 0xB, DD = source, PST = 0xB,
DD = source}

Table 10-5. PST/DDATA Specifications for
Supervisor-Mode Instructions (Continued)

Instruction Operand Syntax PST/DDATA
10-8 ColdFire Family Programmer’s Reference Manual

Chapter 11
Exception Processing
This chapter describes exception processing for the ColdFire family.

11.1 Overview
Exception processing for ColdFire processors is streamlined for performance. Differences
from previous M68000 Family processors include the following:

• A simplified exception vector table

• Reduced relocation capabilities using the vector base register

• A single exception stack frame format

• Use of a single, self-aligning stack pointer

Because the V4 core can implement an MMU, exception processing for devices containing
an MMU is slightly modified. Differences from previous ColdFire Family processors
include the following:

• An instruction restart model for translation (TLB miss) and access faults. This new
functionality extends the existing ColdFire access error fault vector and exception
stack frames.

• Use of separate system stack pointers for user and supervisor modes.

Previous ColdFire processors (V2 and V3) use an instruction restart exception model but
require additional software support to recover from certain access errors.

Exception processing can be defined as the time from the detection of the fault condition
until the fetch of the first handler instruction has been initiated. It consists of the following
four major steps:

1. The processor makes an internal copy of the status register (SR) and then enters
supervisor mode by setting SR[S] and disabling trace mode by clearing SR[T]. The
occurrence of an interrupt exception also clears SR[M] and sets the interrupt priority
mask, SR[I] to the level of the current interrupt request.
Chapter 11. Exception Processing 11-1

Overview
2. The processor determines the exception vector number. For all faults except
interrupts, the processor bases this calculation on exception type. For interrupts, the
processor performs an interrupt acknowledge (IACK) bus cycle to obtain the vector
number from peripheral. The IACK cycle is mapped to a special acknowledge
address space with the interrupt level encoded in the address.

3. The processor saves the current context by creating an exception stack frame on the
system stack. V2 and V3 support a single stack pointer in the A7 address register;
therefore, there is no notion of separate supervisor and user stack pointers. As a
result, the exception stack frame is created at a 0-modulo-4 address on top of the
current system stack. Because V4 supports a supervisor stack pointer (SSP), the
exception stack frame is created at a 0-modulo-4 address on top of the system stack
pointed to by the SSP.
V2 and V3 use a simplified fixed-length stack frame, shown in Figure 11-1, for all
exceptions. V4 uses the same fixed-length stack frame with additional fault status
(FS) encodings to support the MMU. In some exception types, the program counter
(PC) in the exception stack frame contains the address of the faulting instruction
(fault); in others, the PC contains the next instruction to be executed (next).
If the exception is caused by an FPU instruction, the PC contains the address of
either the next floating-point instruction (nextFP) if the exception is pre-instruction,
or the faulting instruction (fault) if the exception is post-instruction.

4. The processor acquires the address of the first instruction of the exception handler.
The instruction address is obtained by fetching a value from the exception table at
the address in the vector base register. The index into the table is calculated as
4 x vector_number. When the index value is generated, the vector table contents
determine the address of the first instruction of the desired handler. After the fetch
of the first opcode of the handler is initiated, exception processing terminates and
normal instruction processing continues in the handler.

The vector base register described in Section 1.5.3, “Vector Base Register (VBR),” holds
the base address of the exception vector table in memory. The displacement of an exception
vector is added to the value in this register to access the vector table. VBR[19–0] are not
implemented and are assumed to be zero, forcing the vector table to be aligned on a
0-modulo-1-Mbyte boundary.

ColdFire processors support a 1024-byte vector table as shown in Table 11-1. The table
contains 256 exception vectors, the first 64 of which are defined by Motorola. The rest are
user-defined interrupt vectors.

Table 11-1. Exception Vector Assignments

Vector Numbers Vector Offset (Hex) Stacked Program Counter1 Assignment

0 000 — Initial stack pointer (SSP for V4e)

1 004 — Initial program counter

2 008 Fault Access error
11-2 ColdFire Family Programmer’s Reference Manual

Overview
ColdFire processors inhibit sampling for interrupts during the first instruction of all
exception handlers. This allows any handler to effectively disable interrupts, if necessary,
by raising the interrupt mask level in the SR.

3 00C Fault Address error

4 010 Fault Illegal instruction

52 014 Fault Divide by zero

6–7 018–01C — Reserved

8 020 Fault Privilege violation

9 024 Next Trace

10 028 Fault Unimplemented line-a opcode

11 02C Fault Unimplemented line-f opcode

123 030 Next Non-PC breakpoint debug interrupt

133 034 Next PC breakpoint debug interrupt

14 038 Fault Format error

15 03C Next Uninitialized interrupt

16–23 040–05C — Reserved

24 060 Next Spurious interrupt

25–31 064–07C Next Level 1–7 autovectored interrupts

32–47 080–0BC Next Trap #0–15 instructions

484 0C0 Fault Floating-point branch on unordered condition

494 0C4 NextFP or Fault Floating-point inexact result

504 0C8 NextFP Floating-point divide-by-zero

514 0CC NextFP or Fault Floating-point underflow

524 0D0 NextFP or Fault Floating-point operand error

534 0D4 NextFP or Fault Floating-point overflow

544 0D8 NextFP or Fault Floating-point input not-a-number (NAN)

554 0DC NextFP or Fault Floating-point input denormalized number

56–60 0E0–0F0 — Reserved

615 0F4 Fault Unsupported instruction

62–63 0F8–0FC — Reserved

64–255 100–3FC Next User-defined interrupts

1 ‘Fault’ refers to the PC of the faulting instruction. ‘Next’ refers to the PC of the instruction immediately after the
faulting instruction. ‘NextFP’ refers to the PC of the next floating-point instruction.

2 If the divide unit is not present (5202, 5204, 5206), vector 5 is reserved.
3 On V2 and V3, all debug interrupts use vector 12; vector 13 is reserved.
4 If the FPU is not present, vectors 48 - 55 are reserved.
5 Some devices do not support this exception; refer to Table 11-3.

Table 11-1. Exception Vector Assignments (Continued)

Vector Numbers Vector Offset (Hex) Stacked Program Counter1 Assignment
Chapter 11. Exception Processing 11-3

Overview
11.1.1 Supervisor/User Stack Pointers (A7 and OTHER_A7)

The V4 architecture supports two unique stack pointer (A7) registers: the supervisor stack
pointer (SSP) and the user stack pointer (USP). This support provides the required isolation
between operating modes as dictated by the virtual memory management scheme provided
by the MMU. Note that only the SSP is used during creation of the exception stack frame.

The hardware implementation of these two program-visible 32-bit registers does not
uniquely identify one as the SSP and the other as the USP. Rather, the hardware uses one
32-bit register as the currently-active A7 and the other as OTHER_A7. Thus, the register
contents are a function of the processor operating mode:

if SR[S] = 1
then

A7 = Supervisor Stack Pointer
other_A7 = User Stack Pointer

else
A7 = User Stack Pointer
other_A7 = Supervisor Stack Pointer

The BDM programming model supports reads and writes to A7 and OTHER_A7 directly.
It is the responsibility of the external development system to determine the mapping of A7
and OTHER_A7 to the two program-visible definitions (SSP and USP), based on the
setting of SR[S]. This functionality is enabled by setting by the dual stack pointer enable
bit CACR[DSPE]. If this bit is cleared, only the stack pointer, A7 (defined for previous
ColdFire versions), is available. DSPE is zero at reset.

If DSPE is set, the appropriate stack pointer register (SSP or USP) is accessed as a function
of the processor’s operating mode. To support dual stack pointers, the following two
privileged MC680x0 instructions to load/store the USP are added to the ColdFire
instruction set architecture as part of ISA_B:

mov.l Ay,USP # move to USP: opcode = 0x4E6(0xxx)

mov.l USP,Ax # move from USP: opcode = 0x4E6(1xxx)

The address register number is encoded in the low-order three bits of the opcode.

11.1.2 Exception Stack Frame Definition

The first longword of the exception stack frame, Figure 11-1, holds the 16-bit format/vector
word (F/V) and 16-bit status register. The second holds the 32-bit program counter address.

Figure 11-1. Exception Stack Frame

Table 11-2 describes F/V fields. FS encodings added to support the MMU are noted.

31 28 27 26 25 18 17 16 15 0

A7→ FORMAT FS[3–2] VEC FS[1–0] Status Register

+ 0x04 Program Counter [31:0]
11-4 ColdFire Family Programmer’s Reference Manual

Overview
11.1.3 Processor Exceptions

Table 11-3 describes ColdFire core exceptions. Note that if a ColdFire processor
encounters any fault while processing another fault, it immediately halts execution with a
catastrophic fault-on-fault condition. A reset is required to force the processor to exit this
halted state.

Table 11-2. Format/Vector Word

Bits Field Description

31–28 FORMAT Format field. Written with a value of {4,5,6,7} by the processor indicating a 2-longword frame
format. FORMAT records any longword stack pointer misalignment when the exception occurred.

A7 at Time of Exception, Bits[1:0] A7 at First Instruction of Handler FORMAT

00 Original A7—8 0100

01 Original A7—9 0101

10 Original A7—10 0110

11 Original A7—11 0111

27–26 FS[3–2] Fault status. Defined for access and address errors and for interrupted debug service routines.
0000 Not an access or address error nor an interrupted debug service routine
0001 Reserved
0010 Interrupt during a debug service routine for faults other than access errors. (New in V4)1

0011 Reserved
0100 Error (for example, protection fault) on instruction fetch
0101 TLB miss on opword of instruction fetch (New in V4, MMU only)
0110 TLB miss on extension word of instruction fetch (New in V4, MMU only)
0111 IFP access error while executing in emulator mode (New in V4, MMU only)
1000 Error on data write
1001 Error on attempted write to write-protected space
1010 TLB miss on data write (New in V4, MMU only)
1011 Reserved
1100 Error on data read
1101 Attempted read, read-modify-write of protected space (New in V4, MMU only)
1110 TLB miss on data read, or read-modify-write (New in V4, MMU only)
1111 OEP access error while executing in emulator mode (New in V4, MMU only)

1 This generally refers to taking an I/O interrupt while in a debug service routine but also applies to other fault
types. If an access error occurs during a debug service routine, FS is set to 0111 if it is due to an instruction
fetch or to 1111 for a data access. This applies only to access errors with the MMU present. If an access error
occurs without an MMU, FS is set to 0010.

25–18 VEC Vector number. Defines the exception type. It is calculated by the processor for internal faults and
is supplied by the peripheral for interrupts. See Table 11-1.

17–16 FS[1–0] See bits 27–26.
Chapter 11. Exception Processing 11-5

Overview
Table 11-3. Exceptions

Vector
Number

Type Description

0,1 Reset Asserting the reset input signal (RSTI) causes a reset exception, which has the highest
exception priority and provides for system initialization and recovery from catastrophic
failure. When assertion of RSTI is recognized, current processing is aborted and
cannot be recovered. The reset exception places the processor in supervisor mode by
setting SR[S] and disables tracing by clearing SR[T]. It clears SR[M] and sets SR[I] to
the highest level (0b111, priority level 7). Next, VBR is cleared. Configuration registers
controlling operation of all on-chip memories are invalidated, disabling the memories.
Note: Implementation-specific supervisor registers are also affected at reset.
After RSTI is negated, the processor waits a number of cycles before beginning the
reset exception process. During this time, certain events are sampled, including the
assertion of the debug breakpoint signal. If the processor is not halted, it initiates the
reset exception by performing two longword read bus cycles. The longword at address
0 is loaded into the stack pointer and the longword at address 4 is loaded into the PC.
After the initial instruction is fetched from memory, program execution begins at the
address in the PC. If an access error or address error occurs before the first instruction
executes, the processor enters a fault-on-fault halted state.

2 Access error Caused by an error when accessing memory. ColdFire cores handle access errors
differently:

V2: For an access error on an instruction fetch, the processor postpones the error
reporting until the instruction at the faulted reference is executed. Thus, faults that
occur during instruction prefetches that are followed by a change of instruction flow do
not generate an exception. When the processor attempts to execute an instruction with
a faulted opword or extension word, the access error is signaled, and the instruction is
aborted; the programming model is not altered by the faulted instruction.
If an access error occurs on an operand read, the processor immediately aborts the
current instruction execution and initiates exception processing. Any address register
changes caused by the auto-addressing modes, (An)+ and -(An), have already
occurred. In addition, if the error occurs during the execution of a MOVEM instruction
loading from memory, registers may contain memory operands.
Due to the processor pipeline implementation, a write cycle may be decoupled from the
execution of the instruction causing the write. Thus, if an access error occurs on an
operand write, the signaling of the error is imprecise. Accordingly, the PC contained in
the exception stack frame represents the location in the program when the access error
is signaled, not necessarily the instruction causing the fault. All programming model
updates associated with the write instruction are complete. The NOP instruction can be
used to help identify write access errors. A NOP is not executed until all previous
operations, including any pending writes, are complete. Thus, if any previous write
terminates with an access error, it is guaranteed to be reported on the NOP.

V3: Access errors are reported only in conjunction with an attempted store to
write-protected memory. Thus, access errors associated with instruction fetch or
operand read accesses are not possible.

V4: If the MMU is disabled, access errors are reported only in conjunction with an
attempted store to write-protected memory. Thus, access errors associated with
instruction fetch or operand read accesses are not possible. The condition code
register is updated if a write-protect error occurs during a CLR or MOV3Q operation to
memory.
Internal memory accesses that fault generate an access error exception. MMU TLB
misses and access violations use the same fault. If the MMU is enabled, all TLB misses
and protection violations generate an access error exception. To quickly determine if a
fault is due to a TLB miss or another type of access error, new FS encodings (described
in Table 11-2) signal TLB misses on instruction fetch, instruction extension fetch, data
read, and data write.
11-6 ColdFire Family Programmer’s Reference Manual

Overview
3 Address error An address error is caused by an attempted execution transferring control to an odd
instruction address (that is, if bit 0 of the target address is set), an attempted use of a
word-sized index register (Xi.w), or by an attempted execution of an instruction with a
full-format indexed addressing mode.
If an address error occurs on a JSR instruction, the V4 processor first pushes the return
address onto the stack and then calculates the target address. On V2 and V3
processors, the target address is calculated, then the return address is pushed on
stack.
If an address error occurs on an RTS instruction, the V4 processor preserves the
original return PC and writes the exception stack frame above this value. On V2 and V3
processors, the faulting return PC is overwritten by the address error stack frame.

4 Illegal
instruction

On V2, only some illegal opcodes (0x0000 and 0x4AFC) are decoded and generate an
illegal instruction exception. Additionally, attempting to execute an illegal line A or line F
opcode generates unique exception types: vectors 10 and 11, respectively. If any other
nonsupported opcode is executed, the resulting operation is undefined.
V3 and V4 decode the complete 16-bit opcode, and this exception is generated if
execution of an unsupported instruction is attempted. In addition, the illegal opcodes
above, line A and line F, also generate this exception.
ColdFire processors do not provide illegal instruction detection on extension words of
any instruction, including MOVEC. Attempting to execute an instruction with an illegal
extension word causes undefined results.

5 Divide-by-zero Attempting to divide by zero causes an exception (vector 5, offset = 0x014). Note that
this exception cannot be generated unless the device has a divide unit.

8 Privilege
violation

Caused by attempted execution of a supervisor mode instruction while in user mode.

9 Trace Trace mode, which allows instruction-by-instruction tracing, is enabled by setting SR[T].
If SR[T] is set, instruction completion (for all but the STOP instruction) signals a trace
exception.The STOP instruction has the following effects:
1 The instruction before the STOP executes and then generates a trace exception. In

the exception stack frame, the PC points to the STOP opcode.
2 When the trace handler is exited, the STOP instruction is executed, loading the SR

with the immediate operand from the instruction.
3 The processor then generates a trace exception. The PC in the exception stack

frame points to the instruction after STOP, and the SR reflects the value loaded in the
previous step.

If the processor is not in trace mode and executes a STOP instruction where the
immediate operand sets SR[T], hardware loads the SR and generates a trace
exception. The PC in the exception stack frame points to the instruction after STOP,
and the SR reflects the value loaded in step 2. Note that because ColdFire processors
do not support hardware stacking of multiple exceptions, it is the responsibility of the
operating system to check for trace mode after processing other exception types. For
example, when a TRAP instruction executes in trace mode, the processor initiates the
TRAP exception and passes control to the corresponding handler. If the system
requires a trace exception, the TRAP exception handler must check for this condition
(SR[15] in the exception stack frame set) and pass control to the trace handler before
returning from the original exception.

Table 11-3. Exceptions (Continued)

Vector
Number

Type Description
Chapter 11. Exception Processing 11-7

Overview
10 Unimplemented
line-a opcode

A line-a opcode results when bits [15:12] of the opword are 1010. This exception is
generated by the attempted execution of an undefined line-a opcode as well as under
the following conditions:
• On an early V2 core or device (5202, 5204, 5206) when attempting to execute a MAC

or EMAC instruction.
• On a later V2 core or device (5206e, 5272) when attempting to execute an EMAC

instruction.
• On an early V3 core or device (5307) when attempting to execute an EMAC

instruction.

11 Unimplemented
line-f opcode

A line-f opcode results when bits [15:12] of the opword are 1111. This exception is
generated under the following conditions:
• When attempting to execute an undefined line-f opcode.
• When attempting to execute an FPU instruction when the FPU is not present.
• When attempting to execute an FPU instruction when the FPU is present but has
been disabled in the CACR.

12,13 Debug The debug interrupt exception is caused by a hardware breakpoint register trigger.
Rather than generating an IACK cycle, the processor internally calculates the vector
number (12 for V2 and V3; 12 or 13, depending on the type of breakpoint trigger for V4).
Additionally, SR[M,I] are unaffected by the interrupt.
On V4, separate exception vectors are provided for PC breakpoints (vector 13) and for
address/data breakpoints (vector 12). In the case of a two-level trigger, the last
breakpoint determines the vector. The two unique entries occur when a PC breakpoint
generates the 0x034 vector.

14 Format error When an RTE instruction executes, the processor first examines the 4-bit format field to
validate the frame type. For a ColdFire processor, attempted execution of an RTE
where the format is not equal to {4, 5, 6, 7} generates a format error. The exception
stack frame for the format error is created without disturbing the original exception
frame and the stacked PC points to RTE. The selection of the format value provides
limited debug support for porting code from M68000 applications. On M68000 Family
processors, the SR was at the top of the stack. Bit 30 of the longword addressed by the
system stack pointer is typically zero. Attempting an RTE using this old format
generates a format error on a ColdFire processor. If the format field defines a valid
type, the processor does the following:
1 Reloads the SR operand.
2 Fetches the second longword operand.
3 Adjusts the stack pointer by adding the format value to the auto-incremented address

after the first longword fetch.
4 Transfers control to the instruction address defined by the second longword operand

in the stack frame.
When the processor executes a FRESTORE instruction, if the restored FPU state
frame contains a nonsupported value, execution is aborted and a format error
exception is generated.

15,
24-31,
64-255

Interrupt Interrupt exception processing, with interrupt recognition and vector fetching, includes
uninitialized and spurious interrupts as well as those where the requesting device
supplies the 8-bit interrupt vector.

32-47 Trap Executing a Trap instruction always forces an exception and is useful for implementing
system calls. The trap instruction may be used to change from user to supervisor
mode.

Table 11-3. Exceptions (Continued)

Vector
Number

Type Description
11-8 ColdFire Family Programmer’s Reference Manual

Overview
11.1.4 Floating-Point Arithmetic Exceptions

This section describes floating-point arithmetic exceptions; Table 11-4 lists these
exceptions in order of priority:

Most floating-point exceptions are taken when the next floating-point arithmetic instruction
is encountered (this is called a pre-instruction exception). Exceptions set during a
floating-point store to memory or to an integer register are taken immediately
(post-instruction exception).

Note that FMOVE is considered an arithmetic instruction because the result is rounded.
Only FMOVE with any destination other than a floating-point register (sometimes called
FMOVE OUT) can generate post-instruction exceptions. Post-instruction exceptions never
write the destination. After a post-instruction exception, processing continues with the next
instruction.

48-55 Floating-point See Section 11.1.4, “Floating-Point Arithmetic Exceptions.”

61 Unsupported
instruction

Executing a valid DIV, MAC, or EMAC instruction when the required optional hardware
module is not present can generate a non-supported instruction exception. Control is
then passed to an exception handler that can then process the opcode as required by
the system. This exception can be generated by the attempted execution of DIV, MAC,
or EMAC instructions as follows:
1 On newer V2 cores without DIV, MAC, or EMAC units.
2 On newer V3 cores without a MAC or EMAC unit. (The divide unit is not optional on
V3.)
3 On newer V4 cores attempting EMAC instructions without an EMAC unit. (The MAC
and divide units are not optional on V4, although the MAC unit can be replaced with an
EMAC.)
Note that this exception will never be generated by the current ColdFire standard
products. The 5202, 5204, and 5206 do not support this exception. The 5206e, 5272,
5307, and 5407 all have divide and MAC units. All of these devices will generate an
unimplemented line-a exception if an EMAC instruction is attempted.

Table 11-4. Exception Priorities

Priority Exception

1 Branch/set on unordered (BSUN)

2 Input Not-a-Number (INAN)

3 Input denormalized number (IDE)

4 Operand error (OPERR)

5 Overflow (OVFL)

6 Underflow (UNFL)

7 Divide-by-zero (DZ)

8 Inexact (INEX)

Table 11-3. Exceptions (Continued)

Vector
Number

Type Description
Chapter 11. Exception Processing 11-9

Overview
A floating-point arithmetic exception becomes pending when the result of a floating-point
instruction sets an FPSR[EXC] bit and the corresponding FPCR[ENABLE] bit is set. A
user write to the FPSR or FPCR that causes the setting of an exception bit in FPSR[EXC]
along with its corresponding exception enabled in FPCR, leaves the FPU in an
exception-pending state. The corresponding exception is taken at the start of the next
arithmetic instruction as a pre-instruction exception.

Executing a single instruction can generate multiple exceptions. When multiple exceptions
occur with exceptions enabled for more than one exception class, the highest priority
exception is reported and taken. It is up to the exception handler to check for multiple
exceptions. The following multiple exceptions are possible:

• Operand error (OPERR) and inexact result (INEX)

• Overflow (OVFL) and inexact result (INEX)

• Underflow (UNFL) and inexact result (INEX)

• Divide-by-zero (DZ) and inexact result (INEX)

• Input denormalized number (IDE) and inexact result (INEX)

• Input not-a-number (INAN) and input denormalized number (IDE)

In general, all exceptions behave similarly. If the exception is disabled when the exception
condition exists, no exception is taken, a default result is written to the destination (except
for BSUN exception, which has no destination), and execution proceeds normally.

If an enabled exception occurs, the same default result above is written for pre-instruction
exceptions but no result is written for post-instruction exceptions.

An exception handler is expected to execute FSAVE as its first floating-point instruction.
This also clears FPCR, which keeps exceptions from occurring during the handler. Because
the destination is overwritten for floating-point register destinations, the original
floating-point destination register value is available for the handler on the FSAVE state
frame. The address of the instruction that caused the exception is available in the FPIAR.
When the handler is done, it should clear the appropriate FPSR exception bit on the FSAVE
state frame, then execute FRESTORE. If the exception status bit is not cleared on the state
frame, the same exception occurs again.

Alternatively, instead of executing FSAVE, an exception handler could simply clear
appropriate FPSR exception bits, optionally alter FPCR, and then return from the
exception. Note that exceptions are never taken on FMOVE to or from the status and control
registers and FMOVEM to or from the floating-point data registers.

At the completion of the exception handler, the RTE instruction must be executed to return
to normal instruction flow.
11-10 ColdFire Family Programmer’s Reference Manual

Overview
11.1.5 Branch/Set on Unordered (BSUN)
A BSUN results from performing an IEEE nonaware conditional test associated with the
FBcc instruction when an unordered condition is present. Any pending floating-point
exception is first handled by a pre-instruction exception, after which the conditional
instruction restarts. The conditional predicate is evaluated and checked for a BSUN
exception before executing the conditional instruction. A BSUN exception occurs if the
conditional predicate is an IEEE non-aware branch and FPCC[NAN] is set. When this
condition is detected, FPSR[BSUN] is set. Table 11-5 shows the results when the exception
is enabled or disabled.

11.1.6 Input Not-A-Number (INAN)
The INAN exception is a mechanism for handling a user-defined, non-IEEE data type. If
either input operand is a NAN, FPSR[INAN] is set. By enabling this exception, the user can
override the default action taken for NAN operands. Because FMOVEM, FMOVE FPCR,
and FSAVE instructions do not modify status bits, they cannot generate exceptions.
Therefore, these instructions are useful for manipulating INANs. See Table 11-6.

11.1.7 Input Denormalized Number (IDE)
The input denorm bit, FPCR[IDE], provides software support for denormalized operands.
When the IDE exception is disabled, the operand is treated as zero, FPSR[INEX] is set, and
the operation proceeds. When the IDE exception is enabled and an operand is

Table 11-5. BSUN Exception Enabled/Disabled Results

Condition BSUN Description

Exception
disabled

0 The floating-point condition is evaluated as if it were the equivalent IEEE-aware conditional
predicate. No exceptions are taken.

Exception
Enabled

1 The processor takes a floating-point pre-instruction exception.
The BSUN exception is unique in that the exception is taken before the conditional predicate is
evaluated. If the user BSUN exception handler fails to update the PC to the instruction after the
excepting instruction when returning, the exception executes again. Any of the following actions
prevent taking the exception again:
• Clearing FPSR[NAN]
• Disabling FPCR[BSUN]
• Incrementing the stored PC in the stack bypasses the conditional instruction. This applies to

situations where fall-through is desired. Note that to accurately calculate the PC increment
requires knowledge of the size of the bypassed conditional instruction.

Table 11-6. INAN Exception Enabled/Disabled Results

Condition INAN Description

Exception
disabled

0 If the destination data format is single- or double-precision, a NAN is generated with a mantissa
of all ones and a sign of zero transferred to the destination. If the destination data format is B,
W, or L, a constant of all ones is written to the destination.

Exception
enabled

1 The result written to the destination is the same as the exception disabled case, unless the
exception occurs on a FMOVE OUT, in which case the destination is unaffected.
Chapter 11. Exception Processing 11-11

Overview
denormalized, an IDE exception is taken but FPSR[INEX] is not set to allow the handler to
set it appropriately. See Table 11-7.

Note that the FPU never generates denormalized numbers. If necessary, software can create
them in the underflow exception handler.

11.1.8 Operand Error (OPERR)
The operand error exception encompasses problems arising in a variety of operations,
including errors too infrequent or trivial to merit a specific exceptional condition. Basically,
an operand error occurs when an operation has no mathematical interpretation for the given
operands. Table 11-8 lists possible operand errors. When one occurs, FPSR[OPERR] is set.

Table 11-9 describes results when the exception is enabled and disabled.

Table 11-7. IDE Exception Enabled/Disabled Results

Condition IDE Description

Exception
disabled

0 Any denormalized operand is treated as zero, FPSR[INEX] is set, and the operation proceeds.

Exception
enabled

1 The result written to the destination is the same as the exception disabled case unless the
exception occurs on a FMOVE OUT, in which case the destination is unaffected. FPSR[INEX] is
not set to allow the handler to set it appropriately.

Table 11-8. Possible Operand Errors

Instruction Condition Causing Operand Error

FADD [(+∞) + (-∞)] or [(-∞) + (+∞)]

FDIV (0 ÷ 0) or (∞ ÷ ∞)

FMOVE OUT (to B, W, or L) Integer overflow, source is NAN or ±∞

FMUL One operand is 0 and the other is ±∞

FSQRT Source is < 0 or -∞

FSUB [(+∞) - (+∞)] or [(-∞) - (-∞)]

Table 11-9. OPERR Exception Enabled/Disabled Results

Condition OPERR Description

Exception
disabled

0 When the destination is a floating-point data register, the result is a double-precision NAN,
with its mantissa set to all ones and the sign set to zero (positive).
For a FMOVE OUT instruction with the format S or D, an OPERR exception is impossible. With
the format B, W, or L, an OPERR exception is possible only on a conversion to integer
overflow, or if the source is either an infinity or a NAN. On integer overflow and infinity source
cases, the largest positive or negative integer that can fit in the specified destination size (B,
W, or L) is stored. In the NAN source case, a constant of all ones is written to the destination.

Exception
enabled

1 The result written to the destination is the same as for the exception disabled case unless the
exception occurred on a FMOVE OUT, in which case the destination is unaffected. If desired,
the user OPERR handler can overwrite the default result.
11-12 ColdFire Family Programmer’s Reference Manual

Overview
11.1.9 Overflow (OVFL)
An overflow exception is detected for arithmetic operations in which the destination is a
floating-point data register or memory when the intermediate result’s exponent is greater
than or equal to the maximum exponent value of the selected rounding precision. Overflow
occurs only when the destination is S- or D-precision format; overflows for other formats
are handled as operand errors. At the end of any operation that could potentially overflow,
the intermediate result is checked for underflow, rounded, and then checked for overflow
before it is stored to the destination. If overflow occurs, FPSR[OVFL,INEX] are set.

Even if the intermediate result is small enough to be represented as a double-precision
number, an overflow can occur if the magnitude of the intermediate result exceeds the range
of the selected rounding precision format. See Table 11-10.

11.1.10 Underflow (UNFL)
An underflow exception occurs when the intermediate result of an arithmetic instruction is
too small to be represented as a normalized number in a floating-point register or memory
using the selected rounding precision, that is, when the intermediate result exponent is less
than or equal to the minimum exponent value of the selected rounding precision. Underflow
can only occur when the destination format is single or double precision. When the
destination is byte, word, or longword, the conversion underflows to zero without causing
an underflow or an operand error. At the end of any operation that could underflow, the
intermediate result is checked for underflow, rounded, and checked for overflow before it
is stored in the destination. FPSR[UNFL] is set if underflow occurs. If the underflow
exception is disabled, FPSR[INEX] is also set.

Even if the intermediate result is large enough to be represented as a double-precision
number, an underflow can occur if the magnitude of the intermediate result is too small to
be represented in the selected rounding precision. Table 11-11 shows results when the
exception is enabled or disabled.

Table 11-10. OVFL Exception Enabled/Disabled Results

Condition OVFL Description

Exception
disabled

0 The values stored in the destination based on the rounding mode defined in FPCR[MODE].
RN Infinity, with the sign of the intermediate result.
RZ Largest magnitude number, with the sign of the intermediate result.
RM For positive overflow, largest positive normalized number

For negative overflow, -∞.
RP For positive overflow, +∞

For negative overflow, largest negative normalized number.

Exception
enabled

1 The result written to the destination is the same as for the exception disabled case unless the
exception occurred on a FMOVE OUT, in which case the destination is unaffected. If desired, the
user OVFL handler can overwrite the default result.
Chapter 11. Exception Processing 11-13

Overview
11.1.11 Divide-by-Zero (DZ)
Attempting to use a zero divisor for a divide instruction causes a divide-by-zero exception.
When a divide-by-zero is detected, FPSR[DZ] is set. Table 11-12 shows results when the
exception is enabled or disabled.

11.1.12 Inexact Result (INEX)
An INEX exception condition exists when the infinitely precise mantissa of a floating-point
intermediate result has more significant bits than can be represented exactly in the selected
rounding precision or in the destination format. If this condition occurs, FPSR[INEX] is set
and the infinitely precise result is rounded according to Table 11-13.

Table 11-11. UNFL Exception Enabled/Disabled Results

Condition UNFL Description

Exception
disabled

0 The stored result is defined below. The UNFL exception also sets FPSR[INEX] if the UNFL
exception is disabled.
RN Zero, with the sign of the intermediate result
RZ Zero, with the sign of the intermediate result
RM For positive underflow, + 0

For negative underflow, smallest negative normalized number
RP For positive underflow, smallest positive normalized number

For negative underflow, - 0

Exception
enabled

1 The result written to the destination is the same as for the exception disabled case, unless the
exception occurs on a FMOVE OUT, in which case the destination is unaffected. If desired, the
user UNFL handler can overwrite the default result. The UNFL exception does not set
FPSR[INEX] if the UNFL exception is enabled so the exception handler can set FPSR[INEX]
based on results it generates.

Table 11-12. DZ Exception Enabled/Disabled Results

Condition DZ Description

Exception
disabled

0 The destination floating-point data register is written with infinity with the sign set to the exclusive
OR of the signs of the input operands.

Exception
enabled

1 The destination floating-point data register is written as in the exception is disabled case.

Table 11-13. Inexact Rounding Mode Values

Mode Result

RN The representable value nearest the infinitely precise intermediate value is the result. If the two nearest
representable values are equally near, the one whose lsb is 0 (even) is the result. This is sometimes called
round-to-nearest-even.

RZ The result is the value closest to and no greater in magnitude than the infinitely precise intermediate result.
This is sometimes called chop-mode, because the effect is to clear bits to the right of the rounding point.

RM The result is the value closest to and no greater than the infinitely precise intermediate result (possibly -∞).

RP The result is the value closest to and no less than the infinitely precise intermediate result (possibly +∞).
11-14 ColdFire Family Programmer’s Reference Manual

Overview
FPSR[INEX] is also set for any of the following conditions:

• If an input operand is a denormalized number and the IDE exception is disabled

• An overflowed result

• An underflowed result with the underflow exception disabled

Table 11-14 shows results when the exception is enabled or disabled.

11.1.13 V4 Changes to the Exception Processing Model

When an MMU is present in a ColdFire device, all memory references require support for
precise, recoverable faults. This section details the changes in the ColdFire exception
processing model due to the presence of an MMU.

The ColdFire instruction restart mechanism ensures that a faulted instruction restarts from
the beginning of execution; that is, no internal state information is saved when an exception
occurs and none is restored when the handler ends. Given the PC address defined in the
exception stack frame, the processor reestablishes program execution by transferring
control to the given location as part of the RTE (return from exception) instruction.

The instruction restart recovery model requires program-visible register changes made
during execution to be undone if that instruction subsequently faults.

The V4 Operand Execution Pipeline (OEP) structure naturally supports this concept for
most instructions; program-visible registers are updated only in the final OEP stage when
fault collection is complete. If any type of exception occurs, pending register updates are
discarded.

For V4 cores, most single-cycle instructions already support precise faults and instruction
restart. Some complex instructions do not. Consider the following memory-to-memory
move:

mov.l (Ay)+,(Ax)+ # copy 4 bytes from source to destination

On a V4 processor, this instruction takes 1 cycle to read the source operand (Ay) and 1 to
write the data into (Ax). Both the source and destination address pointers are updated as
part of execution. Table 11-15 lists the operations performed in execute stage (EX).

Table 11-14. INEX Exception Enabled/Disabled Results

Condition INEX Description

Exception
disabled

0 The result is rounded and then written to the destination.

Exception
enabled

1 The result written to the destination is the same as for the exception disabled case, unless the
exception occurred on a FMOVE OUT, in which case the destination is unaffected. If desired, the
user INEX handler can overwrite the default result.
Chapter 11. Exception Processing 11-15

Overview
A fault detected with the destination memory write is reported during the second cycle. At
this point, operations performed in the first cycle are complete, so if the destination write
takes any type of access error, Ay is updated. After the access error handler executes and
the faulting instruction restarts, the processor’s operation is incorrect because the source
address register has an incorrect (post-incremented) value.

To recover the original state of the programming model for all instructions, the V4 core
adds the needed hardware to support full register recovery. This hardware allows
program-visible registers to be restored to their original state for multi-cycle instructions so
that the instruction restart mechanism is supported. Memory-to-memory moves and move
multiple loads are representative of the complex instructions needing the special recovery
support.

Table 11-15. OEP EX Cycle Operations

EX Cycle Operations

1 Read source operand from memory @ (Ay), update Ay, new Ay = old Ay + 4

2 Write operand into destination memory @ (Ax), update Ax, new Ax = old Ax + 4, update CCR
11-16 ColdFire Family Programmer’s Reference Manual

Chapter 12
Processor Instruction Summary
This chapter provides a quick reference of the ColdFire instructions. Table 12-2 lists the
ColdFire instructions by mnemonic, the descriptive name, and the cores that support them.
The Version 2 and 3 cores (V2 and V3) support ISA_A, and the Version 4 core (V4)
supports ISA_B.

Table 12-3 lists the instructions supported by the optional MAC unit (both fractional and
integer only) and the optional enhanced MAC unit (EMAC). Table 12-4 lists the
instructions supported by the optional floating-point unit (FPU).

The standard products available at the time of publication of this document and the cores
and optional modules that they contain are shown in Table 12-1.

Table 12-1. Standard Products

Standard Product Core/ISA Optional Modules

5202 V2, ISA_A

5204 V2, ISA_A

5206 V2, ISA_A

5206e V2, ISA_A Divide, MAC

5272 V2, ISA_A Divide, MAC

5307 V3, ISA_A MAC (fractional)1

1 Divide is a required module for V3 and V4.

5407 V4, ISA_B MAC (fractional)1
Chapter 12. Processor Instruction Summary 12-1

Table 12-2. ColdFire Instruction Set and Processor Cross-Reference

Mnemonic Description V2 V3 V4

ADD Add X X X

ADDA Add Address X X X

ADDI Add Immediate X X X

ADDQ Add Quick X X X

ADDX Add with Extend X X X

AND Logical AND X X X

ANDI Logical AND Immediate X X X

ASL, ASR Arithmetic Shift Left and Right X X X

Bcc.{B,W} Branch Conditionally, Byte and Word X X X

Bcc.L Branch Conditionally, Longword X

BCHG Test Bit and Change X X X

BCLR Test Bit and Clear X X X

BRA.{B,W} Branch Always, Byte and Word X X X

BRA.L Branch Always, Longword X

BSET Test Bit and Set X X X

BSR.{B,W} Branch to Subroutine, Byte and Word X X X

BSR.L Branch to Subroutine, Longword X

BTST Test a Bit X X X

CLR Clear X X X

CMP.{B,W} Compare, Byte and Word X

CMP.L Compare, Longword X X X

CMPA.W Compare Address, Word X

CMPA.L Compare Address, Longword X X X

CMPI.{B,W} Compare Immediate, Byte and Word X

CMPI.L Compare Immediate, Longword X X X

CPUSHL Push and Possibly Invalidate Cache X X X

DIVS Signed Divide X1 X X

DIVU Unsigned Divide X1 X X

EOR Logical Exclusive-OR X X X

EORI Logical Exclusive-OR Immediate X X X

EXT, EXTB Sign Extend X X X

HALT Halt CPU X X X

ILLEGAL Take Illegal Instruction Trap X X X

INTOUCH Instruction Fetch Touch X

JMP Jump X X X

JSR Jump to Subroutine X X X
12-2 ColdFire Family Programmer’s Reference Manual

LEA Load Effective Address X X X

LINK Link and Allocate X X X

LSL, LSR Logical Shift Left and Right X X X

MOV3Q Move 3-Bit Data Quick X

MOVE Move X X X2

MOVE from CCR Move from Condition Code Register X X X

MOVE from SR Move from the Status Register X X X

MOVE from USP Move from User Stack Pointer X3

MOVE to CCR Move to Condition Code Register X X X

MOVE to SR Move to the Status Register X X X

MOVE to USP Move to User Stack Pointer X3

MOVEA Move Address X X X

MOVEC Move Control Register X X X

MOVEM Move Multiple Registers X X X

MOVEQ Move Quick X X X

MULS Signed Multiply X X X

MULU Unsigned Multiply X X X

MVS Move with Sign Extend X

MVZ Move with Zero-Fill X

NEG Negate X X X

NEGX Negate with Extend X X X

NOP No Operation X X X

NOT Logical Complement X X X

OR Logical Inclusive-OR X X X

ORI Logical Inclusive-OR Immediate X X X

PEA Push Effective Address X X X

PULSE Generate Processor Status X X X

REMS Signed Divide Remainder X1 X X

REMU Unsigned Divide Remainder X1 X X

RTE Return from Exception X X X

RTS Return from Subroutine X X X

SATS Signed Saturate X

Scc Set According to Condition X X X

STOP Load Status Register and Stop X X X

SUB Subtract X X X

SUBA Subtract Address X X X

Table 12-2. ColdFire Instruction Set and Processor Cross-Reference (Continued)

Mnemonic Description V2 V3 V4
Chapter 12. Processor Instruction Summary 12-3

SUBI Subtract Immediate X X X

SUBQ Subtract Quick X X X

SUBX Subtract with Extend X X X

SWAP Swap Register Words X X X

TAS Test and Set and Operand X

TPF Trap False X X X

TRAP Trap X X X

TST Test Operand X X X

UNLK Unlink X X X

WDDATA Write Data Control Register X X X

WDEBUG Write Debug Control Register X X X

1 The 5202, 5204, and 5206 do not support this instruction.
2 V4 and V4e additionally support the MOVE.{B,W} #<data>,d16(Ax)
3 The 5407 does not have an MMU and therefore does not support this instruction.

Table 12-3. ColdFire MAC and EMAC Instruction Sets

Mnemonic Description MAC EMAC

MAC Multiply and Accumulate X X

MOVCLR Move from Accumulator and Clear X

MOVE ACC to ACC Copy Accumulator X

MOVE from ACC Move from Accumulator X X

MOVE from ACCext01 Move from Accumulator 0 and 1
Extensions

X

MOVE from ACCext23 Move from Accumulator 2 and 3
Extensions

X

MOVE from MACSR Move from MAC Status Register X X

MOVE from MACSR to
CCR

Move from MAC Status Register to
Condition Code Register

X X

MOVE from MASK Move from MAC Mask Register X X

MOVE to ACC Move to Accumulator X X

MOVE to ACCext01 Move to Accumulator 0 and 1
Extensions

X

MOVE to ACCext23 Move to Accumulator 2 and 3
Extensions

X

MOVE to MACSR Move to MAC Status Register X X

MOVE to MASK Move to MAC Mask Register X X

MSAC Multiply and Subtract X X

Table 12-2. ColdFire Instruction Set and Processor Cross-Reference (Continued)

Mnemonic Description V2 V3 V4
12-4 ColdFire Family Programmer’s Reference Manual

Table 12-4. ColdFire FPU Instruction Set

Mnemonic Description

FABS, FSABS, FDABS Floating-Point Absolute Value

FADD, FSADD, FDADD Floating-Point Add

FBcc Floating-Point Branch Conditionally

FCMP floating-Point Compare

FDIV, FSDIV, FDDIV Floating-Point Divide

FINT, FSINT, FDINT Floating-Point Integer

FINTRZ Floating-Point Integer Round-to-Zero

FMOVE, FSMOVE, FDMOVE Move Floating-Point Data Register

FMOVE from FPCR Move from the Floating-Point Control Register

FMOVE from FPIAR Move from the Floating-Point Instruction Address Register

FMOVE from FPSR Move from the Floating-Point Status Register

FMOVE to FPCR Move to the Floating-Point Control Register

FMOVE to FPIAR Move to the Floating-Point Instruction Address Register

FMOVE to FPSR Move to the Floating-Point Status Register

FMOVEM Move Multiple Floating-Point Data Registers

FMUL, FSMUL, FDMUL Floating-Point Multiply

FNEG, FSNEG, FDNEG Floating-Point Negate

FNOP No Operation

FRESTORE Restore Internal Floating-Point State

FSAVE Save Internal Floating-Point State

FSQRT, FSSQRT, FDSQRT Floating-Point Square Root

FSUB Floating-Point Subtract

FTST Test Floating-Point Operand
Chapter 12. Processor Instruction Summary 12-5

12-6 ColdFire Family Programmer’s Reference Manual

Appendix A
S-Record Output Format

The S-record format for output modules is for encoding programs or data files in a printable
format for transportation between computer systems. The transportation process can be
visually monitored, and the S-records can be easily edited.

A.1 S-Record Content
Visually, S-records are essentially character strings made of several fields that identify the
record type, record length, memory address, code/data, and checksum. Each byte of binary
data encodes as a two-character hexadecimal number: the first character represents the
high- order four bits, and the second character represents the low-order four bits of the byte.
Figure A-1 illustrates the five fields that comprise an S-record. Table A-1 lists the
composition of each S-record field.

Figure A-1. Five Fields of an S-Record

Type Record Length Address Code/Data Checksum

Table A-1. Field Composition of an S-Record

Field
Printable

Characters
Contents

Type 2 S-record type—S0, S1, etc.

Record Length 2 The count of the character pairs in the record, excluding the type and
record length.

Address 4, 6, or 8 The 2-, 3-, or 4-byte address at which the data field is to be loaded into
memory.

Code/Data 0–2n From 0 to n bytes of executable code, memory loadable data, or
descriptive information. Some programs may limit the number of bytes
to as few as 28 (56 printable characters in the S-record).

Checksum 2 The least significant byte of the one’s complement of the sum of the
values represented by the pairs of characters making up the record
length, address, and the code/data fields.
Appendix A. S-Record Output Format A-1

S-Record Types
When downloading S-records, each must be terminated with a CR. Additionally, an
S-record may have an initial field that fits other data such as line numbers generated by
some time-sharing systems. The record length (byte count) and checksum fields ensure
transmission accuracy.

A.2 S-Record Types
There are eight types of S-records to accommodate the encoding, transportation, and
decoding functions. The various Motorola record transportation control programs (e.g.
upload, download, etc.), cross assemblers, linkers, and other file creating or debugging
programs, only utilize S-records serving the program’s purpose. For more information on
support of specific S-records, refer to the user’s manual for that program.

An S-record format module may contain S-records of the following types:

S0 The header record for each block of S-records. The code/data field
may contain any descriptive information identifying the following
block of S-records. The header record can be used to designate
module name, version number, revision number, and description
information. The address field is normally zeros.

S1 A record containing code/data and the 2-byte address at which the
code/data is to reside.

S2 A record containing code/data and the 3-byte address at which the
code/data is to reside.

S3 A record containing code/data and the 4-byte address at which the
code/data is to reside.

S5 A record containing the number of S1, S2, and S3 records
transmitted in a particular block. This count appears in the address
field. There is no code/data field.

S7 A termination record for a block of S3 records. The address field may
optionally contain the 4-byte address of the instruction to which
control is to be passed. There is no code/data field.

S8 A termination record for a block of S2 records. The address field may
optionally contain the 3-byte address of the instruction to which
control is to be passed. There is no code/data field.

S9 A termination record for a block of S1 records. The address field may
optionally contain the 2-byte address of the instruction to which
control is to be passed. If this address is not specified, the first entry
point specification encountered in the object module input will be
used. There is no code/data field.

Each block of S-records uses only one termination record. S7 and S8 records are only active
when control passes to a 3- or 4-byte address; otherwise, an S9 is used for termination.
A-2 ColdFire Family Programmer’s Reference Manual

S-Record Creation
Normally, there is only one header record, although it is possible for multiple header
records to occur.

A.3 S-Record Creation
Dump utilities, debuggers, or cross assemblers and linkers produce S-record format
programs. Programs are available for downloading or uploading a file in S- record format
from a host system to a microprocessor-based system.

A typical S-record format module is printed or displayed as follows:

S00600004844521B

S1130000285F245F2212226A000424290008237C2A

S11300100002000800082629001853812341001813

S113002041E900084E42234300182342000824A952

S107003000144ED492

S9030000FC

The module has an S0 record, four S1 records, and an S9 record. The following character
pairs comprise the S-record format module.

S0 Record:

S0 S-record type S0, indicating that it is a header record

06 Hexadecimal 06 (decimal 6), indicating that six character pairs (or
ASCII bytes) follow

0000 A 4-character, 2-byte address field; zeros in this example

48 ASCII H

44 ASCII D

52 ASCII R

1B The checksum

First S1 Record:

S1 S-record type S1, indicating that it is a code/data record to be
loaded/verified at a 2-byte address

13 Hexadecimal 13 (decimal 19), indicating that 19 character pairs,
representing 19 bytes of binary data, follow

0000 A 4-character, 2-byte address field (hexadecimal address 0000)
indicating where the data that follows is to be loaded.

The next 16 character pairs of the first S1 record are the ASCII bytes of the actual program
code/data. In this assembly language example, the program hexadecimal opcodes are
sequentially written in the code/data fields of the S1 records.
Appendix A. S-Record Output Format A-3

S-Record Creation
The rest of this code continues in the remaining S1 record’s code/data fields and stores in
memory location 0010, etc.

2A The checksum of the first S1 record.

The second and third S1 records also contain hexadecimal 13 (decimal 19) character pairs
and end with checksums 13 and 52, respectively. The fourth S1 record contains 07 character
pairs and has a checksum of 92.

S9 Record:

S9 S-record type S9, indicating that it is a termination record

03 Hexadecimal 03, indicating that three character pairs (3 bytes)
follow

0000 Address field, zeros

FC Checksum of the S9 record

Each printable character in an S-record encodes in hexadecimal (ASCII in this example)
representation of the binary bits that transmit. Figure A-2 illustrates the sending of the first
S1 record. Table A-2 lists the ASCII code for S-records.

.

Figure A-2. Transmission of an S1 Record

Opcode Instruction

285F MOVE.L (A7) +, A4

245F MOVE.L (A7) +, A2

2212 MOVE.L (A2), D1

226A0004 MOVE.L 4(A2), A1

24290008 MOVE.L FUNCTION(A1), D2

237C MOVE.L #FORCEFUNC, FUNCTION(A1)

Type Record Length Address Code/Data Checksum
S 1 1 3 0 0 0 0 2 8 5 F **** 2 A

5 3 3 1 3 1 3 3 3 0 3 0 3 0 3 0 3 2 3 8 3 5 4 6 **** 3 2 4 1
010100110011000100110001001100110011000000110000001100000011000000110010001110000011010101000110 **** 0011001001000001
A-4 ColdFire Family Programmer’s Reference Manual

S-Record Creation
Table A-2. ASCII Code

Least
Significant

Digit

Most Significant Digit

0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P ‘ p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 “ 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ’ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS – = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL
Appendix A. S-Record Output Format A-5

S-Record Creation
A-6 ColdFire Family Programmer’s Reference Manual

INDEX
A
Access control registers (ACR0–ACR3), 1-14
Accumulator

EMAC, 1-9
extensions (ACCext01, ACCext23), 1-11

Address register
direct mode, 2-3
general (A0-A7), 1-2
indirect mode

displacement, 2-5
postincrement, 2-4
predecrement, 2-4
regular, 2-3
scaled index and 8-bit displacement, 2-6

Address space identifier (ASID), 1-14

B
Bit manipulation instructions, 3-8
Branch/set on unordered (BSUN), 11-11

C
Cache

control register (CACR), 1-14
maintenance instructions, 3-10

Condition code register (CCR), 1-2
Conditional testing, 7-3

D
Data formats

and type summary, 1-18
multiply accumulate, 1-20

Data movement instructions, 3-4
Data register

direct mode, 2-3
general (D0–D7), 1-2

Data, immediate, 2-9
Divide-by-zero (DZ), 11-14

E
EMAC

accumulators, 1-9
user instructions, 6-1–6-24
user programming model, 1-8

Exception processing model V4 changes, 11-15
Exception stack frame definition, 11-4

Exceptions
floating-point arithmetic, 11-9
processor, 11-5

F
Floating-point

arithmetic exceptions, 11-9
arithmetic instructions, 3-11
control register (FPCR), 1-4
data formats, 1-16
data registers (FP0-FP7), 1-4
data types

denormalized numbers, 1-18
not-a-number, 1-18
zeros, 1-17

instruction
address register (FPIAR), 1-6
descriptions, 7-9–7-43

status register (FPSR), 1-5, 7-1
Formats

floating-point data, 1-16
integer data, 1-16

FPU user programming model, 1-4

I
Inexact result (INEX), 11-14
Infinities, 1-17
Input

denormalized number, 11-11
not-a-number (INAN), 11-11

Instructions
bit manipulation, 3-8
cache maintenance, 3-10
data movement, 3-4
descriptions, 7-7
floating-point arithmetic, 3-11
format, 2-1
integer arithmetic, 3-5
logical, 3-7
processor summary, 12-1
program control, 3-8
results, exceptions, 7-6
set, 12-2, 12-5

additions, 3-12
shift, 3-7
summary, 3-1
system control, 3-10
Index Index-7

INDEX
Integer arithmetic instructions, 3-5
Integer data formats

general, 1-16
in memory, 1-22
in registers, 1-20

Integer unit user programming model, 1-1
Integer user instructions, 4-1–4-84

L
Logical instructions, 3-7

M
MAC

accumulator (ACC), 1-8
mask register (MASK)

EMAC, 1-11
MAC, 1-8

status register (MACSR)
EMAC, 1-8
MAC, 1-7

user instructions, 5-1–5-16
user programming model, 1-7

Memory integer data formats, 1-22
MMU base address register (MMUBAR), 1-14
Modes

address register
indirect

postincrement, 2-4
regular, 2-6

indirect with displacement, 2-5
addressing

absolute long, 2-9
absolute short, 2-8

direct
address register, 2-3
data register, 2-3

effective addressing, 2-2, 2-10
indirect

address register, 2-3
predecrement address register, 2-4
program counter, 2-6, 2-7

Module base address register (MBAR), 1-15
Multiply accumulate data formats, 1-20

N
Normalized numbers, 1-17

O
Operand error (OPERR), 11-12
Operation code map, 9-1
Organization of data in registers, 1-20
Overflow (OVFL), 11-13

P
Processor

cross-reference, 12-2–12-5
exceptions, 11-5

Program control instructions, 3-8
Program counter (PC)

general, 1-2
indirect

displacement, 2-6
scaled index and 8-bit displacement, 2-7

Programming model
EMAC user, 1-8
FPU user, 1-4
integer unit user, 1-1
MAC user, 1-7
supervisor, 1-11

R
RAM base address registers

(RAMBAR0/RAMBAR1), 1-15
Registers

ABLR/ABHR, 8-18
access control (ACR0–ACR3), 1-14
address (A0–A7), 1-2
cache control (CACR), 1-14
condition code (CCR), 1-2
data (D0-D7), 1-2
data organization, 1-20
DBR/DBMR, 8-18
floating-point

control (FPCR), 1-4
data (FP0–FP7), 1-4
instruction address (FPIAR), 1-6
status, 7-1
status (FPSR), 1-5

integer data formats, 1-20
MAC mask (MASK)

EMAC, 1-11
MAC, 1-8

MAC status (MACSR)
EMAC, 1-8
MAC, 1-7

MMU base address (MMUBAR), 1-14
module base address (MBAR), 1-15
RAM base (RAMBAR0/RAMBAR1), 1-15
ROM base address (ROMBAR0/ROMBAR1), 1-15
status (SR), 1-12
vector base (VBR), 1-14, 11-2

ROM base address registers
(ROMBAR0/ROMBAR1), 1-15
Index-8 ColdFire Family Programmer’s Reference Manual

INDEX
S
Shift instructions, 3-7
S-record

content, A-1
creation, A-3
types, A-2

Stack, 2-10
Stack pointers supervisor/user, 1-13, 11-4
Status register (SR), 1-12
Supervisor

instruction descriptions, 8-1–8-18
instruction set, 10-7
programming model, 1-11

Supervisor/user stack pointers, 1-13, 11-4
System control instructions, 3-10

U
Underflow (UNFL), 11-13
User instruction set, 10-1–10-7

V
Vector base register, 1-14, 11-2
Index Index-9

INDEX
Index-10 ColdFire Family Programmer’s Reference Manual

1

2

3

4

5

7

8

10

11

6

IND

Introduction

Addressing Capabilities

Instruction Set Summary

Integer User Instructions

MAC User Instructions

EMAC User Instructions

FPU User Instructions

Supervisor Instructions

Exception Processing

PST/DDATA Encodings

Index

12Processor Instruction Summary

AS-Record Output Format

9Instruction Format Summary

Introduction

Addressing Capabilities

Instruction Set Summary

Integer User Instructions

MAC User Instructions

EMAC User Instructions

FPU User Instructions

Supervisor Instructions

Exception Processing

PST/DDATA Encodings

Index

Processor Instruction Summary

S-Record Output Format

Instruction Format Summary

1

2

3

4

5

7

8

10

11

6

IND

12

A

9

	ColdFire® Family Programmer’s Reference Manual
	Table of Contents
	List of Figures
	List of Tables
	Chapter�1 Introduction
	1.1 Integer Unit User Programming Model
	Figure�1-1. ColdFire Family User Programming Model
	1.1.1 Data Registers (D0–D7)
	1.1.2 Address Registers (A0–A7)
	1.1.3 Program Counter (PC)
	1.1.4 Condition Code Register (CCR)
	Figure�1-2. Condition Code Register (CCR)
	Table�1-1. CCR Bit Descriptions

	1.2 Floating-Point Unit User Programming Model
	Figure�1-3. ColdFire Family Floating-Point Unit User Programming Model
	1.2.1 Floating-Point Data Registers (FP0–FP7)
	1.2.1.1 Floating-Point Control Register (FPCR)
	Figure�1-4. Floating-Point Control Register (FPCR)
	Table�1-2. FPCR Field Descriptions

	1.2.2 Floating-Point Status Register (FPSR)
	Figure�1-5. Floating-Point Status Register (FPSR)
	Table�1-3. FPSR Field Descriptions�

	1.2.3 Floating-Point Instruction Address Register (FPIAR)

	1.3 MAC User Programming Model
	Figure�1-6. MAC Unit Programming Model
	1.3.1 MAC Status Register (MACSR)
	Figure�1-7. MAC Status Register (MACSR)
	Table�1-4. MACSR Field Descriptions

	1.3.2 MAC Accumulator (ACC)
	1.3.3 MAC Mask Register (MASK)

	1.4 EMAC User Programming Model
	Figure�1-8. EMAC Programming Model
	1.4.1 MAC Status Register (MACSR)
	Figure�1-9. MAC Status Register (MACSR)
	Table�1-5. MACSR Field Descriptions

	1.4.2 MAC Accumulators (ACC[0:3])
	Figure�1-10. EMAC Fractional Alignment
	Figure�1-11. EMAC Signed and Unsigned Integer Alignment

	1.4.3 Accumulator Extensions (ACCext01, ACCext23)
	Figure�1-12. Accumulator 0 and 1 Extensions (ACCext01)
	Figure�1-13. Accumulator 2 and 3 Extensions (ACCext01)

	1.4.4 MAC Mask Register (MASK)

	1.5 Supervisor Programming Model
	Figure�1-14. Supervisor Programming Model
	Table�1-6. Implemented Supervisor Registers by Device�
	1.5.1 Status Register (SR)
	Figure�1-15. Status Register (SR)
	Table�1-7. Status Field Descriptions�

	1.5.2 Supervisor/User Stack Pointers (A7 and OTHER_A7)
	1.5.3 Vector Base Register (VBR)
	Figure�1-16. Vector Base Register (VBR)

	1.5.4 Cache Control Register (CACR)
	1.5.5 Address Space Identifier (ASID)
	1.5.6 Access Control Registers (ACR0–ACR3)
	1.5.7 MMU Base Address Register (MMUBAR)
	Figure�1-17. MMU Base Address Register
	Table�1-8. MMU Base Address Register Field Descriptions

	1.5.8 RAM Base Address Registers (RAMBAR0/RAMBAR1)
	1.5.9 ROM Base Address Registers (ROMBAR0/ROMBAR1)
	1.5.10 Module Base Address Register (MBAR)
	Figure�1-18. Module Base Address Register (MBAR)
	Table�1-9. MBAR Field Descriptions�

	1.6 Integer Data Formats
	Table�1-10. Integer Data Formats

	1.7 Floating-Point Data Formats
	1.7.1 Floating-Point Data Types
	1.7.1.1 Normalized Numbers
	Figure�1-19. Normalized Number Format

	1.7.1.2 Zeros
	Figure�1-20. Zero Format

	1.7.1.3 Infinities
	Figure�1-21. Infinity Format

	1.7.1.4 Not-A-Number
	Figure�1-22. Not-a-Number Format

	1.7.1.5 Denormalized Numbers
	Figure�1-23. Denormalized Number Format

	1.7.2 FPU Data Format and Type Summary
	Table�1-11. Real Format Summary�

	1.8 Multiply Accumulate Data Formats
	Figure�1-24. Two’s Complement, Signed Fractional Equation

	1.9 Organization of Data in Registers
	1.9.1 Organization of Integer Data Formats in Registers
	Figure�1-25. Organization of Integer Data Format in Data Registers
	Figure�1-26. Organization of Addresses in Address Registers

	1.9.2 Organization of Integer Data Formats in Memory
	Figure�1-27. Memory Operand Addressing
	Figure�1-28. Memory Organization for Integer Operands

	Chapter�2 Addressing Capabilities
	2.1 Instruction Format
	Figure�2-1. Instruction Word General Format
	Figure�2-2. Instruction Word Specification Formats
	Table�2-1. Instruction Word Format Field Definitions

	2.2 Effective Addressing Modes
	2.2.1 Data Register Direct Mode
	Figure�2-3. Data Register Direct

	2.2.2 Address Register Direct Mode
	Figure�2-4. Address Register Direct

	2.2.3 Address Register Indirect Mode
	Figure�2-5. Address Register Indirect

	2.2.4 Address Register Indirect with Postincrement Mode
	Figure�2-6. Address Register Indirect with Postincrement

	2.2.5 Address Register Indirect with Predecrement Mode
	Figure�2-7. Address Register Indirect with Predecrement

	2.2.6 Address Register Indirect with Displacement Mode
	Figure�2-8. Address Register Indirect with Displacement

	2.2.7 Address Register Indirect with Scaled Index and 8-Bit Displacement Mode
	Figure�2-9. Address Register Indirect with Scaled Index and 8-Bit Displacement

	2.2.8 Program Counter Indirect with Displacement Mode
	Figure�2-10. Program Counter Indirect with Displacement

	2.2.9 Program Counter Indirect with Scaled Index and 8-Bit Displacement Mode
	Figure�2-11. Program Counter Indirect with Scaled Index and 8-Bit Displacement

	2.2.10 Absolute Short Addressing Mode
	Figure�2-12. Absolute Short Addressing

	2.2.11 Absolute Long Addressing Mode
	Figure�2-13. Absolute Long Addressing

	2.2.12 Immediate Data
	Table�2-2. Immediate Operand Location
	Figure�2-14. Immediate Data Addressing

	2.2.13 Effective Addressing Mode Summary
	Table�2-3. Effective Addressing Modes and Categories�

	2.3 Stack
	Figure�2-15. Stack Growth from High Memory to Low Memory
	Figure�2-16. Stack Growth from Low Memory to High Memory

	Chapter�3 Instruction Set Summary
	3.1 Instruction Summary
	Table�3-1. Notational Conventions�
	3.1.1 Data Movement Instructions
	Table�3-2. Data Movement Operation Format

	3.1.2 Integer Arithmetic Instructions
	Table�3-3. Integer Arithmetic Operation Format�

	3.1.3 Logical Instructions
	Table�3-4. Logical Operation Format

	3.1.4 Shift Instructions
	Table�3-5. Shift Operation Format

	3.1.5 Bit Manipulation Instructions
	Table�3-6. Bit Manipulation Operation Format

	3.1.6 Program Control Instructions
	Table�3-7. Program Control Operation Format

	3.1.7 System Control Instructions
	Table�3-8. System Control Operation Format

	3.1.8 Cache Maintenance Instructions
	Table�3-9. Cache Maintenance Operation Format

	3.1.9 Floating-Point Arithmetic Instructions
	Table�3-10. Dyadic Floating-Point Operation Format
	Table�3-11. Dyadic Floating-Point Operations
	Table�3-12. Monadic Floating-Point Operation Format
	Table�3-13. Monadic Floating-Point Operations

	3.2 Instruction Set Additions
	Table�3-14. ColdFire User Instruction Set Summary�
	Table�3-15. ColdFire Supervisor Instruction Set Summary
	Table�3-16. ColdFire ISA_B Additions Summary
	Table�3-17. MAC Instruction Set Summary
	Table�3-18. EMAC Instruction Set Enhancements Summary
	Table�3-19. Floating-Point Instruction Set Summary

	Chapter�4 Integer User Instructions
	Chapter�5 Multiply-Accumulate Unit (MAC) User Instructions
	Chapter�6 Enhanced Multiply-Accumulate Unit (EMAC) User Instructions
	Chapter�7 Floating-Point Unit (FPU) User Instructions
	7.1 Floating-Point Status Register (FPSR)
	Figure�7-1. Floating-Point Status Register (FPSR)
	Table�7-1. FPSR Field Descriptions�
	Table�7-2. FPSR EXC Bits

	7.2 Conditional Testing
	Table�7-3. FPCC Encodings�
	Table�7-4. Floating-Point Conditional Tests�

	7.3 Instruction Results when Exceptions Occur
	Table�7-5. FPCR EXC Byte Exception Enabled/Disabled Results�

	7.4 Instruction Descriptions
	Table�7-6. Data Format Encoding

	Chapter�8 Supervisor (Privileged) Instructions
	Table�8-1. State Frames
	Table�8-2. State Frames
	Table�8-3. ColdFire CPU Space Assignments�

	Chapter�9 Instruction Format Summary
	9.1 Operation Code Map
	Table�9-1. Operation Code Map

	Chapter�10 PST/DDATA Encodings
	10.1 User Instruction Set
	Table�10-1. PST/DDATA Specification for User-Mode Instructions�
	Table�10-2. PST/DDATA Values for User-Mode Multiply-Accumulate Instructions�
	Table�10-3. PST/DDATA Values for User-Mode Floating-Point Instructions�
	Table�10-4. Data Markers and FPU Operand Format Specifiers

	10.2 Supervisor Instruction Set
	Table�10-5. PST/DDATA Specifications for Supervisor-Mode Instructions�

	Chapter�11 Exception Processing
	11.1 Overview
	Table�11-1. Exception Vector Assignments�
	11.1.1 Supervisor/User Stack Pointers (A7 and OTHER_A7)
	11.1.2 Exception Stack Frame Definition
	Figure�11-1. Exception Stack Frame
	Table�11-2. Format/Vector Word�

	11.1.3 Processor Exceptions
	Table�11-3. Exceptions�

	11.1.4 Floating-Point Arithmetic Exceptions
	Table�11-4. Exception Priorities

	11.1.5 Branch/Set on Unordered (BSUN)
	Table�11-5. BSUN Exception Enabled/Disabled Results

	11.1.6 Input Not-A-Number (INAN)
	Table�11-6. INAN Exception Enabled/Disabled Results

	11.1.7 Input Denormalized Number (IDE)
	Table�11-7. IDE Exception Enabled/Disabled Results

	11.1.8 Operand Error (OPERR)
	Table�11-8. Possible Operand Errors
	Table�11-9. OPERR Exception Enabled/Disabled Results

	11.1.9 Overflow (OVFL)
	Table�11-10. OVFL Exception Enabled/Disabled Results

	11.1.10 Underflow (UNFL)
	Table�11-11. UNFL Exception Enabled/Disabled Results

	11.1.11 Divide-by-Zero (DZ)
	Table�11-12. DZ Exception Enabled/Disabled Results

	11.1.12 Inexact Result (INEX)
	Table�11-13. Inexact Rounding Mode Values
	Table�11-14. INEX Exception Enabled/Disabled Results

	11.1.13 V4 Changes to the Exception Processing Model
	Table�11-15. OEP EX Cycle Operations

	Chapter�12 Processor Instruction Summary
	Table�12-1. Standard Products�
	Table�12-2. ColdFire Instruction Set and Processor Cross-Reference�
	Table�12-3. ColdFire MAC and EMAC Instruction Sets�
	Table�12-4. ColdFire FPU Instruction Set

	Appendix�A S-Record Output Format
	A.1 S-Record Content
	Figure�A-1. Five Fields of an S-Record

	A.2 S-Record Types
	A.3 S-Record Creation
	Figure�A-2. Transmission of an S1 Record
	A
	B
	C
	D
	E
	F
	I
	L
	M
	N
	O
	P
	R
	S
	U
	V

	Index

