
Application 1: Count Down Timer

This program will count down from the packed BCD number in the HL register pair
to 0 at a time increment determined by the hex number in the DE register pair. When
the co unt = 0, the alarm will sound and the LEDs will light. The alarm can be
discon tinued and the program terminated by pressing any key on the keypad. After
typing in the program, load the HL and DE register pairs as follows :

Load the HL register pair with the desired time interval.
Format = packed BCD range = 9999 to 0001

Load DE register pair with the time scaler.
Format = hex range = 0001h to FFFFh

The time scaler determines how many hundredths of seconds must pass before the
counter is decremented. The time interval between decrements will be ((time scaler)
/ 100) seconds. For example, if the scaler is 0064h (100 decimal) the timer will
decrement once a second. If the scaler is 1770h (6000 decimal) the timer will count
decrement once every 60 seconds.

 ;---;
 ;...........EQUATES.....................................;
 ;---;

 FFE9 = VEC7HLF: EQU 0FFE9H ;INT 7.5 VECTOR
 0000 = SCALELO: EQU 00H ;307200HZ / 768 =
 004C = SCALEHI: EQU 4CH ;100HZ TICK RATE
 0014 = TIMERLO: EQU 14H ;TIMER PORTS
 0015 = TIMERHI: EQU 15H
 00CD = TIMCMD: EQU 0CDH ;TIMER FUNC. COMMAND
 0010 = CMDREG: EQU 10H ;TIMER COMMAND PORT
 001A = INTMASK: EQU 1AH ;INTERRUPT MASK
 FF01 = TIMPROG: EQU 0FF01H ;RTC PROG START ADDR
 000C = SERVC: EQU 0CH ;EMOS SERVICES
 0012 = SERV12: EQU 12H
 000B = SERV0B: EQU 0BH
 1000 = MOS: EQU 1000H ;MOS CALL LOCATION
 00FF = LIGHT: EQU 0FFH ;ALARM LED ON PATTERN
 0000 = DARK: EQU 0 ;ALARM LED OFF PATTERN

 ;---;
 FF01 ORG TIMPROG
 ;---;

 ;---;
 ;...........INITIALIZE..................................;
 ;---;

 FF01 F3 START: DI ;DISABLE INTERRUPTS
 FF02 22AEFF SHLD TIM1 ;LOAD H/L TO TIMER1
 FF05 EB XCHG
 FF06 22A4FF SHLD SCALER ;D/E CONTAINS SCALER
 FF09 2157FF LXI H,TIMERS ;ON 7.5 INTERRUPT
 FF0C 22E9FF SHLD VEC7HLF ;VECTOR TO RTC
 FF0F 3E00 MVI A,SCALELO ;SET LOW COUNT BYTE
 FF11 D314 OUT TIMERLO ;OF TIMER CHIP

 FF13 3E4C MVI A,SCALEHI ;SET HIGH COUN T BYTE
 FF15 D315 OUT TIMERHI ;OF TIMER CHIP

 FF17 3ECD MVI A,TIMCMD ;SET TIMER CHIP FOR
 FF19 D310 OUT CMDREG ;100 HZ SQUARE WAVE
 FF1B 3E01 MVI A,01H ;SET ALARM FLAG TO
 FF1D 32B0FF STA ALRMFLAG ;ARM ALARM
 FF20 2AA4FF LHLD SCALER ;INITIALIZE TIMER 0
 FF23 22ACFF SHLD TIM0
 FF26 3E1A MVI A,INTMASK ;UNMASK 7.5 AND 5.5
 FF28 30 SIM ;INTERRUPTS
 FF29 FB EI ;ENABLE INTERRUPTS

 ;---;
 ;...........MAIN PROGAM.................................;
 ;---;

 FF2A 0E12 DOTIME: MVI C,SERV12 ;USE SERVICE 12
 FF2C 2AAEFF LHLD TIM1 ;TO DISPLAY TIMER 1
 FF2F EB XCHG ;DE WILL BE DISPLAYED
 FF30 CD0010 CALL MOS ;CALL MOS
 FF33 3AB0FF LDA ALRMFLAG ;IF ALARM IS ON
 FF36 FE01 CPI 01H ;GO WAIT FOR KEY
 FF38 CA2AFF JZ DOTIME ;ELSE DISPLAY TIMER
 FF3B 0E12 MVI C,SERV12 ;MAKE SURE WE DISPLAY
 FF3D 2AAEFF LHLD TIM1 ;ONE LAST TIME TO
 FF40 EB XCHG ;DISPLAY TERMINAL
 FF41 CD0010 CALL MOS ;COUNT
 FF44 0E0B MVI C,SERV0B ;STRIKE ANY KEY
 FF46 CD0010 CALL MOS ;TO STOP ALARM
 FF49 20 RIM ;SPEAKER OFF
 FF4A F640 ORI 40H
 FF4C E67F ANI 7FH
 FF4E 30 SIM
 FF4F 0E0C MVI C,SERVC ;LEDS OFF
 FF51 1E00 MVI E,DARK
 FF53 CD0010 CALL MOS
 FF56 FF RST 7 ;RETURN TO MOS
 ;---;
 ;...........7.5 INTERRUPT HANDLER.......................;
 ;--;
 FF57 F5 TIMERS: PUSH PSW
 FF58 E5 PUSH H
 FF59 2AACFF LHLD TIM0 ;GET TIM0
 FF5C 7D MOV A,L ;IF ITS NOT ZERO
 FF5D B4 ORA H
 FF5E C29CFF JNZ DECTIM0 ;DECREMENT TIM0
 FF61 2AA4FF LHLD SCALER ;ELSE TIM0 = 100
 FF64 22ACFF SHLD TIM0 ;RELOAD TIM0
 FF67 3AAEFF LDA TIM1 ;GET TIM1 LOW
 FF6A C699 ADI 99H ;DECREMENT
 FF6C 27 DAA ;DECIMAL ADJUST
 FF6D 32AEFF STA TIM1 ;STORE TIM1 LOW
 FF70 3AAFFF LDA TIM1+01H ;GET TIM1 HIGH
 FF73 CE99 ACI 99H ;DECREMENT
 FF75 27 DAA ;DECIMAL ADJUST
 FF76 32AFFF STA TIM1+01H ;STORE TIM1 HIGH
 FF79 2AAEFF LHLD TIM1 ;GET TIM1
 FF7C 7D MOV A,L ;IF ITS NOT ZERO
 FF7D B4 ORA H
 FF7E C2A0FF JNZ EXITTIME ;EXIT
 FF81 3AB0FF LDA ALRMFLAG ;IF ALARM HAS
 FF84 FE00 CPI 00H ;BEEN ACTIVATED
 FF86 CAA0FF JZ EXITTIME ;EXIT
 FF89 3E00 MVI A,00H ;ELSE, ZERO ALARM
 FF8B 32B0FF STA ALRMFLAG ;FLAG & ACTIVATE
 FF8E 20 RIM ;SPEAKER ON
 FF8F F6C0 ORI 0C0H

 FF91 30 SIM
 FF92 0E0C MVI C,SERVC ;LEDS ON
 FF94 1EFF MVI E,LIGHT
 FF96 CD0010 CALL MOS
 FF99 C3A0FF JMP EXITTIME ;EXIT
 FF9C 2B DECTIM0: DCX H ;DECREMENT TIM0
 FF9D 22ACFF SHLD TIM0
 FFA0 E1 EXITTIME: POP H ;RECOVER REGISTERS
 FFA1 F1 POP PSW
 FFA2 FB EI
 FFA3 C9 RET ;RETURN
 ;---;
 ;...........SUBROUTINES.................................;
 ;---;

 ;---;
 ;...........DATA STORAGE................................;
 ;---;
 FFA4 SCALER: DS 02H ;DETERMINES TIME INCR.
 FFA6 DISPBUFF: DS 06H ;DISPLAY BUFFER
 FFAC TIM0: DS 02H
 FFAE TIM1: DS 02H ;SOFTWARE TIMER 1
 FFB0 ALRMFLAG: DS 01H ;ALARM FLAG.0 = NO ALRM
 ;---;
 FFB1 END

The machine language for the program is listed below.

ADDRESS DATA DESCRIPTION ADDRESS DATA DESCRIPTION
FF01 F3 DI FF1D 32 STA FFB0
FF02 22 SHLD FFAE FF1E B0
FF03 AE FF1F FF
FF04 FF FF20 2A LHLD FFA4
FF05 EB XCHG FF21 A4
FF06 22 SHLD FFA4 FF22 FF
FF07 A4 FF23 22 SHLD FFAC
FF08 FF FF24 AC
FF09 21 LXI H,FF57 FF25 FF
FF0A 57 FF26 3E MVI A,1A
FF0B FF FF27 1A
FF0C 22 SHLD FFE9 FF28 30 SIM
FF0D E9 FF29 FB EI
FF0E FF FF2A 0E MVI C,12
FF0F 3E MVI A,00 FF2B 12
FF10 00 FF2C 2A LHLD FFAE
FF11 D3 OUT 14 FF2D AE
FF12 14 FF2E FF
FF13 3E MVI A,4C FF2F EB XCHG
FF14 4C FF30 CD CALL 1000
FF15 D3 OUT 15 FF31 00
FF16 15 FF32 10
FF17 3E MVI A,CD FF33 3A LDA FFB0
FF18 CD FF34 B0
FF19 D3 OUT 10 FF35 FF
FF1A 10 FF36 FE CPI 01
FF1B 3E MVI A,01 FF37 01
FF1C 01

continued on next page...

ADDRESS DATA DESCRIPTION ADDRESS DATA DESCRIPTION
FF38 CA JZ FF2A FF76 32 STA FFAF
FF39 2A FF77 AF
FF3A FF FF78 FF
FF3B 0E MVI C,12 FF79 2A LHLD FFAE
FF3C 12 FF7A AE
FF3D 2A LHLD FFAE FF7B FF
FF3E AE FF7C 7D MOV A,L
FF3F FF FF7D B4 ORA H
FF40 EB XCHG FF7E C2 JNZ FFA0
FF41 CD CALL 1000 FF7F A0
FF42 00 FF80 FF
FF43 10 FF81 3A LDA FFB0
FF44 0E MVI C,0B FF82 B0
FF45 0B FF83 FF
FF46 CD CALL 1000 FF84 FE CPI 00
FF47 00 FF85 00
FF48 10 FF86 CA JZ FFA0
FF49 20 RIM FF87 A0
FF4A F6 ORI 40 FF88 FF
FF4B 40 FF89 3E MVI A,00
FF4C E6 ANI 7F FF8A 00
FF4D 7F FF8B 32 STA FFB0
FF4E 30 SIM FF8C B0
FF4F 0E MVI C,0C FF8D FF
FF50 0C FF8E 20 RIM
FF51 1E MVI E,00 FF8F F6 ORI C0
FF52 00 FF90 C0
FF53 CD CALL 1000 FF91 30 SIM
FF54 00 FF92 0E MVI C,0C
FF55 10 FF93 0C
FF56 FF RST 7 FF94 1E MVI E,FF
FF57 F5 PUSH PSW FF95 FF
FF58 E5 PUSH H FF96 CD CALL 1000
FF59 2A LHLD FFAC FF97 00
FF5A AC FF98 10
FF5B FF FF99 C3 JMP FFA0
FF5C 7D MOV A,L FF9A A0
FF5D B4 ORA H FF9B FF
FF5E C2 JNZ FF9C FF9C 2B DCX H
FF5F 9C FF9D 22 SHLD FFAC
FF60 FF FF9E AC
FF61 2A LHLD FFA4 FF9F FF
FF62 A4 FFA0 E1 POP H
FF63 FF FFA1 F1 POP PSW
FF64 22 SHLD FFAC FFA2 FB EI
FF65 AC FFA3 C9 RET
FF66 FF
FF67 3A LDA FFAE
FF68 AE
FF69 FF
FF6A C6 ADI 99
FF6B 99
FF6C 27 DAA
FF6D 32 STA FFAE
FF6E AE
FF6F FF
FF70 3A LDA FFAF
FF71 AF
FF72 FF
FF73 CE ACI 99
FF74 99
FF75 27 DAA

Application 2: Waveform Generator
This application allows the user to output 4 different waveforms (sine,

square, triangle and sawtooth) from the digital to analog convertor. The desired
waveform can be selected by moving DIP switches 6 and 7 to one of 4 possible
combinations. The frequency of the waveforms can be changed by moving DIP
switches 0 through 5.

timerhi: equ 15h ; the timer mode and MSB of count length
timerlo: equ 14h ; the LSB of count length
dip: equ 12h ; DIP switch port
dacout: equ 13h ; Digital to analog output port
cmdreg: equ 10h ; 8155 control register.

 org 0ff01h
getime: in dip ;get value of DIP switches
 add a ;shift left padding zeros
 add a ;shift left padding zeros
 out timerlo ;set the low count
 mvi a,11000000b
 out timerhi ;single pulse w/auto reload
 mvi a,0cdh
 out cmdreg ;enable timer

 in dip ;read DIP again
 ani 11000000b ;Mask all DIP bits except 6 and 7
 cpi 0
 jz sinewv ;if upper bits are 0, output sine wave
 cpi 01000000b
 jz sqrwav ;if upper 2 bits are 01, output square wave
 cpi 10000000b
 jz triang ;if upper 2 bits are 10, output triangle wave

 ; If none of the above, upper 2 bits are 11, so output a
 ; sawtooth wave

sawwav: mvi c,0 ; invert the pattern
 mvi d,3fh ; starting value to output
 jmp trian2

 ; triangle wave
triang: mvi c,1
 mvi d,0 ; upward slope 0 to 3e
trian1: mov a,d
 call dactim ; output the pattern to DAC and wait
 inr d
 mvi a,3fh ; if D = 3F then slope down
 cmp d
 jnz trian1

trian2: mov a,d ; downward slope 3f to 1
 call dactim ; output the pattern to DAC and wait
 dcr d
 jnz trian2
 jmp getime ; check DIP switch

 ; square wave
sqrwav: mvi c,1 ; non-inverted output
sqrwv2: mvi d,32 ; output 32 times for each half of period
sqrwv3: xra a
 call dactim ; output the pattern to DAC and wait
 dcr d
 jnz sqrwv3 ; jump if not output 32 times already
 dcr c ; change to inverted output mode
 jz sqrwv2 ; if c=0 then sqrwv2

 jmp getime ; c=FF so check DIP switch

 ; sine wave
sinewv: lxi h,sintbl ; point to sine table
quadst: mvi c,1 ; C=1 = 1st 2 quadrants, C=0 2nd two
quadrants
quad1: inx h ; skip the 0
qud1lp: inx h
 mov a,m ; A is value from table
 ora a ; set Z flag if A = 0
 jz quad2 ; if A = 0 then read the table backwards
 call dactim ; output the pattern to DAC and wait
 jmp qud1lp

quad2: dcx h ; skip the 0
qud2lp: dcx h
 mov a,m ; A is value from table
 ora a ; set Z flag if A = 0
 jz quad3 ; if A=0 then invert the output pattern
 call dactim ; output the pattern to DAC and wait
 jmp qud2lp

quad3: dcr c ; change invert flag
 jz quad1 ; if C=0 start over but invert data
 jmp getime ; if C=FF then check DIP switch

 ; DACTIM: This subroutine examines the C register and if C=0
 ; it will invert the data in the A register otherwise if C=1 it
 ; will not. The A register is then output to the D to A convertor.
 ; After this, the RST 7.5 interrupt flag will be polled until a pulse
 ; is sent from the 8155 timer. This causes the program to pause after
 ; each output from the D to A convertor according the the length
 ; of the timer count.
dactim: inr c ; see what C is (0 or 1)
 dcr c ; ...without changing it
 jnz dactim1 ; jump if C = 1 and don't invert data
 mov b,a ; invert the data
 mvi a,3fh ; by subtracting it from this value
 sub b

dactim1: out dacout ; output the data
polltmr: rim ; loop until rst 7.5 flag is high
 ani 01000000b ; mask all but rst 7.5 flag
 jz polltmr ; check it again if not set
 mvi a,10h
 sim ; clear the interrupt flag
 ret

 ; This is 1 quadrant of the sine wave pattern with zeros marking
 ; the start and the end.
sintbl: defb 0, 1Fh,21h,23h,25h, 27h,29h,2Bh,2Dh, 2Eh,30h,32h,34h, 35h
 defb 36h,38h,39h,3Ah, 3Bh,3Ch,3Dh,3Dh, 3Eh,3Eh,3Fh,3Fh, 3Fh, 0

 end

ADDRESS DATA DESCRIPTION ADDRESS DATA DESCRIPTION
FF01 DB IN 12 FF3C 15 DCR D
FF02 12 FF3D C2 JNZ FF38
FF03 87 ADD A FF3E 38
FF04 87 ADD A FF3F FF
FF05 D3 OUT 14 FF40 C3 JMP FF01
FF06 14 FF41 01
FF07 3E MVI A,C0 FF42 FF
FF08 C0 FF43 0E MVI C,01
FF09 D3 OUT 15 FF44 01
FF0A 15 FF45 16 MVI D,20
FF0B 3E MVI A,CD FF46 20
FF0C CD FF47 AF XRA A
FF0D D3 OUT 10 FF48 CD CALL FF7C
FF0E 10 FF49 7C
FF0F DB IN 12 FF4A FF
FF10 12 FF4B 15 DCR D
FF11 E6 ANI C0 FF4C C2 JNZ FF47
FF12 C0 FF4D 47
FF13 FE CPI 00 FF4E FF
FF14 00 FF4F 0D DCR C
FF15 CA JZ FF56 FF50 CA JZ FF45
FF16 56 FF51 45
FF17 FF FF52 FF
FF18 FE CPI 40 FF53 C3 JMP FF01
FF19 40 FF54 01
FF1A CA JZ FF43 FF55 FF
FF1B 43 FF56 21 LXI H,FF91
FF1C FF FF57 91
FF1D FE CPI 80 FF58 FF
FF1E 80 FF59 0E MVI C,01
FF1F CA JZ FF29 FF5A 01
FF20 29 FF5B 23 INX H
FF21 FF FF5C 23 INX H
FF22 0E MVI C,00 FF5D 7E MOV A,M
FF23 00 FF5E B7 ORA A
FF24 16 MVI D,3F FF5F CA JZ FF68
FF25 3F FF60 68
FF26 C3 JMP FF38 FF61 FF
FF27 38 FF62 CD CALL FF7C
FF28 FF FF63 7C
FF29 0E MVI C,01 FF64 FF
FF2A 01 FF65 C3 JMP FF5C
FF2B 16 MVI D,00 FF66 5C
FF2C 00 FF67 FF
FF2D 7A MOV A,D FF68 2B DCX H
FF2E CD CALL FF7C FF69 2B DCX H
FF2F 7C FF6A 7E MOV A,M
FF30 FF FF6B B7 ORA A
FF31 14 INR D FF6C CA JZ FF75
FF32 3E MVI A,3F FF6D 75
FF33 3F FF6E FF
FF34 BA CMP D FF6F CD CALL FF7C
FF35 C2 JNZ FF2D FF70 7C
FF36 2D FF71 FF
FF37 FF FF72 C3 JMP FF69
FF38 7A MOV A,D FF73 69
FF39 CD CALL FF7C FF74 FF
FF3A 7C FF75 0D DCR C
FF3B FF FF76 CA JZ FF5B

continued on next page...

ADDRESS DATA DESCRIPTION
FF77 5B
FF78 FF
FF79 C3 JMP FF01
FF7A 01
FF7B FF
FF7C 0C INR C
FF7D 0D DCR C
FF7E C2 JNZ FF85
FF7F 85
FF80 FF
FF81 47 MOV B,A
FF82 3E MVI A,3F
FF83 3F
FF84 90 SUB B
FF85 D3 OUT 13
FF86 13
FF87 20 RIM
FF88 E6 ANI 40
FF89 40
FF8A CA JZ FF87
FF8B 87
FF8C FF
FF8D 3E MVI A,10
FF8E 10
FF8F 30 SIM
FF90 C9 RET
FF91 00 From here down is sine wave data
FF92 1F
FF93 21
FF94 23
FF95 25
FF96 27
FF97 29
FF98 2B
FF99 2D
FF9A 2E
FF9B 30
FF9C 32
FF9D 34
FF9E 35
FF9F 36
FFA0 38
FFA1 39
FFA2 3A
FFA3 3B
FFA4 3C
FFA5 3D
FFA6 3D
FFA7 3E
FFA8 3E
FFA9 3F
FFAA 3F
FFAB 3F
FFAC 00

APPLICATION 3-1

Application 3:Application 3:Application 3:Application 3: Interfacing a Temperature Sensor to the PRIMERInterfacing a Temperature Sensor to the PRIMERInterfacing a Temperature Sensor to the PRIMERInterfacing a Temperature Sensor to the PRIMER

Purpose:

To expose the student to rudimentary analog interface techniques.

Goals:

1. Build and test a simple temperature sensing circuit.
2. Load a program that will make use of the temperature sensor's output.
3. Calibrate the sensor and software to provide a temperature reading in approximate engineering units.
4. Control a simple process with temperature.

Materials required:Materials required:Materials required:Materials required:

1) PRIMER trainer
1) Fahrenheit thermometer
1) hair dryer
 (A digital voltmeter may also prove helpful if available)

Component DescriptionComponent DescriptionComponent DescriptionComponent Description DIGI-KEY part numberDIGI-KEY part numberDIGI-KEY part numberDIGI-KEY part number
LM358 Dual Op-Amp. LM358N 1
LM35 Prec Celsius Temp Sensor. LM35DZ-ND 1
100 Ohm 1% metal film resistor. 100.0XBK-ND 1
1K Ohm 1% metal film resistor. 1.00KXBK-ND 2
100K Ohm 5% carbon film resistor. 100KQBK-ND 4
100 K Ohm Potentiometer 3292W-104-ND 1
8 pin soldertail dip socket A9308 1
1X2 inch piece of perfboard

The electronic components listed above may be ordered from DIGI-KEY® , by phone by dialing 1-800-344-4539. They may also be found at
electronic supply stores and other mail order houses.

Circuit Description:Circuit Description:Circuit Description:Circuit Description:

The temperature sensing circuit used, in our application, is centered around the National Semiconductor LM35 series temperature sensors.
The LM35N, with a range of (0 - 100 degrees Celsius), will be used in our application and produce an output voltage that is linearly proportional
to the Celsius temperature. The LM35 senses temperature by amplifying the voltage differential at the base-emitter junctions of two identical
transistors, that are operating at different currents, with the same temperature applied to them. As the junction temperature changes, the
curve of base-emitter voltage vs. temperature will differ between the two transistors, because they are operating at different currents. This
differential would normally be a problem in conventional circuitry, but is taken advantage of here. The differential voltage is amplified by the
LM35, and presented to the output. The LM35, unlike other sensors, is calibrated in Celsius and provides 10 millivolts per degree Celsius.
 The advantage of this calibration is that we need not subtract a large constant voltage from the output to scale down Kelvin calibration. Each
degree Kelvin is the same as one degree centigrade, but the scales start at different absolute temperatures. Zero degrees kelvin is -273 degrees
centigrade, therefore, 0 degrees centigrade is +273 degrees kelvin. Additional Information may be obtained from National Semiconductor’s
website at (http://www.national.com/pf/LM/LM35.html)

Although kelvin and Celsius are equivalent (for this application) Fahrenheit degrees are entirely different. Both the scale shift, and the scale
“gain” are different. Standard conversion formulas are used to convert centigrade to Fahrenheit and vice-versa. As nine Fahrenheit degrees

APPLICATION 3-2

pass for 5 Celsius degrees (5/9 plus the 32 Fahrenheit scale shift), each degree Fahrenheit will produce an eighteen (18) millivolt change per
degree Fahrenheit. The program description describes how the analog reading is converted to Fahrenheit.

Referring to the schematic, the LM35 temperature sensor chip, U1, is powered by the 5 volt VCC supply of the PRIMER, which comes from
the header connector plugged onto the analog port pins. As temperature rises, the LM35 output voltage (pin 2), rises. In our application, the
 PRIMER requires an inverse proportionality to the temperature rise. To achieve this inverse proportion to temperature rise , one half of U2,
(LM358 Dual Op-Amp) is configured as a DC Summing Amplifier. The output of the LM35 is fed into the inverting pin (2), of the LM358. Pin
3 of the (LM358 Dual Op-Amp) has a voltage reference applied via VR1,R5,R6,R7. The output of the LM35 is subtracted from the voltage
reference obtaining the inverse proportionality with temperature rise.

The PRIMER’s A/D converter has 6 bits of resolution. This works out to 26 or 64 unique readings (or counts, as it is often termed in reference
to A/D’s) from 0 to 5V or 5V/64=0.078V per count which is 78mV per count. The circuit was designed to cause a change of slightly more
than one count per millivolt change. To achieve this the second half of the LM358 is configured as a non-inverting DC amplifier. The output
of the DC Summing Amplifier, via pin 1, is applied to the the non-inverting pin, 5 . The gain is set via the feedback resistor, R1, and R2 and
applied to the inverting pin 6. The resistor values for R1 and R2 have been chosen to provide a gain of 11 to the output via pin 7 and therefore
will output 110 milivolts per degree Celsius.

Procedure:Procedure:Procedure:Procedure:

The temperature circuit should be built on perfboard, and connected to the PRIMER's analog port connector header. The circuit may be
connected by wire-wrapping, soldering or by using a female connector. The circuit will draw power from the PRIMER, and feed its analog
output to the PRIMER. Carefully check the wiring of the circuit, and be sure it is properly connected to the PRIMER.

HINT:HINT:HINT:HINT: Allow the circuit to thoroughly cool after soldering and handling. Residual heat that remains in the LM35 package, will
deter attempts to adjust the setpoint correctly. If you set VR1, and the reading slowly drifts down, (lower temperature)
it is probably due to this effect.

APPLICATION 3-3

APPLICATION 3-4

Load the following program into memory:

 ; This program shows the fahrenheit temperature in the
 ; left four displays
leds equ 11h ; output port for digital output LEDs
adcin equ 9 ; ADCIN service number
leddec equ 13h ; LEDDEC service number
mult equ 7 ; MULT service number
div equ 8 ; DIV service number
mos equ 1000h ; address of MOS services
adjst equ 123 ; #of fahrenheit degrees * 100 per
 ; change in value returned from ADCIN
 org 0ff01h
loop: mvi c,adcin
 call mos ; get the digital value of analog input voltage
 mvi h,0
 lda mxanlg ; maximum analog value (this may be different on
 ; other PRIMERs, or with different temp sensors)
 sub l ; invert the analog conversion
 mov l,a ; HL = analog value
 lxi d,adjst ; load D with the adjustment factor
 mvi c,mult
 call mos ; DE = HL * DE
 xchg ; HL = DE
 lxi d,100
 mvi c,div
 call mos ; divide HL by 100
 lda basetmp ; get the base temperature
 add l ; now A is the actual temperature
 mov e,a ; E = temperature
 mov a,e ; A = temperature
 lhld lotemp ; L = low temp limit, H=high temp limit
 cmp l ; see if analog value is below L
 jnc chkhi ; check the high value if not
 mvi a,0
 out leds ; turn on LEDs
chkhi: mov a,e ; A = temperature
 cmp h
 jc noled ; if A<H then don't turn off LEDs
 mvi a,0FFh
 out leds ; H > = A so turn off LEDs
noled: mvi d,0 ; clear D register
 mvi c,leddec
 call mos ; display the temp in DE
 jmp loop ; read it again

mxanlg: ds 1 ; max analog value given by temp sensor
basetmp: ds 1 ; base temperature
lotemp: ds 1 ; lower limit temperature
hitemp: ds 1 ; upper limit temperature
 end

APPLICATION 3-5

ADDRESS DATA INSTRUCTION
FF01 0E MVI C,09
FF02 09
FF03 CD CALL 1000
FF04 00
FF05 10
FF06 26 MVI H,00
FF07 00
FF08 3A LDA FF42
FF09 42
FF0A FF
FF0B 95 SUB L
FF0C 6F MOV L,A
FF0D 11 LXI D,007B
FF0E 7B
FF0F 00
FF10 0E MVI C,07
FF11 07
FF12 CD CALL 1000
FF13 00
FF14 10
FF15 EB XCHG
FF16 11 LXI D,0064
FF17 64
FF18 00
FF19 0E MVI C,08
FF1A 08
FF1B CD CALL 1000
FF1C 00
FF1D 10
FF1E 3A LDA FF43
FF1F 43
FF20 FF
FF21 85 ADD L
FF22 5F MOV E,A
FF23 7B MOV A,E

ADDRESS DATA INSTRUCTION
FF24 2A LHLD FF44
FF25 44
FF26 FF
FF27 BD CMP L
FF28 D2 JNC FF2F
FF29 2F
FF2A FF
FF2B 3E MVI A,0
FF2C 00
FF2D D3 OUT 11
FF2E 11
FF2F 7B MOV A,E
FF30 BC CMP H
FF31 DA JC FF38
FF32 38
FF33 FF
FF34 3E MVI A,FF
FF35 FF
FF36 D3 OUT 11
FF37 11
FF38 16 MVI D,00
FF39 00
FF3A 0E MVI C,13
FF3B 13
FF3C CD CALL 1000
FF3D 00
FF3E 10
FF3F C3 JMP FF01
FF40 01
FF41 FF
FF42 3F (max analog val)
FF43 00 (base temp data)
FF44 5A (lo temp limit)
FF45 64 (hi temp limit)

APPLICATION 3-6

After loading in the program, you must calibrate the temperature sensor circuit and the program. Start the program running at FF01
and observe the left four numeric output LEDs. A decimal number should be displayed there. With a small screwdriver, turn the potentiometer
(VR1) clockwise. If after 20 turns the output hasn't changed, turn VR1 counterclockwise for 20 turns (VR1 has mechanical stops that don't
care if you turn them too many times). Adjust VR1 until the value on the display is as low as it can go. As soon as the value on the display
stops decreasing, stop turning VR1. Subtract the value that is on the displays from 64 (decimal), stop the program then convert that value
to hexadecimal and store it at FF42. Since the value returned by the A/D convertor decreases as the temperature increases, it is subtracted
from the maximum value the A/D convertor can produce (normally 63 decimal) thereby inverting the value. The temperature sensor, though,
does not produce the 5 volts required to give the maximum value, and for this reason the value at FF42 must be changed.

Now check the temperature of the sensor using a thermometer and convert this value to hex and store it at FF43. This is the base
temperature. If you start the program at FF01 again, the base temperature (or within 1 or 2 degrees of it) will be shown on the displays. Heat
up the sensor with the hair dryer and you will see that when the displayed temperature reaches 100 degrees the digital output LEDs turn off.
 Let the sensor cool down to below 90 degrees and they will turn on again. It is possible for the digital output connector (connected to the
digital output LEDs) to control external devices such as fans or heaters, if you know how to build relay drivers that will turn such devices on
and off (do not attempt this if you are not proficient in electronics). If a fan is connected to the output connector, the program can turn on
the fan when the temperature reaches 100 degrees and turn it off when the temperature drops below 90 degrees. Likewise, if a heater is
connected, the program can turn on the heater when the temperature drops below 90 and turn it off when the temperature reaches 100
degrees.

You may be wondering by now why the program is written in such a way as to turn the LEDs on at one temperature and turn them
off at another. This is done to keep the output device from rapidly oscillating on and off. Rapid oscillation is fine when dealing with LEDs but
it can be destructive to relays. This technique of using different turn on and turn off temperatures is commonly used in environment control
systems. To see what would happen if there was one turn on and turn off temperature, store 5A at address FF45 and run the program. Heat
up the sensor to 89 degrees and while watching the digital output LEDs, slowly heat the sensor to 90 degrees. You should see that as the
temperature approaches 90 degrees the LEDs will start to oscillate rapidly for a moment (the LEDs may appear to dim) until the temperature
is stable at 90 degrees.

Program Description:Program Description:Program Description:Program Description:

The program reads the analog to digital convertor and then inverts the value that was returned from it so that as the temperature increases,
the value will increase. This value is then scaled to provide an accurate Fahrenheit temperature. It was found through experimentation, that
a change of 69 degrees from the base temperature causes the A/D convertor value to change by 56 decimal. This means that for each change
in A/D convertor value there is a 69/56 or 1.23 degree change in the temperature. Since MOS only does integer math, a trick had to be used
to perform floating point math. The inverted A/D convertor value was multiplied by 123 and then the product was divided by 100 which
effectively scaled the value by 1.23 and removed the tenths and hundredths digits. After the A/D convertor value is converted to fahrenheit,
the base temperature is added to it to give the actual value. After this, it is compared to the low and high temperature values. If the
temperature is below the low temperature value, zero is sent to the port for the digital output LEDs (which causes them to turn on), and if the
temperature is at the high temperature limit, FF hex is sent the to the port (which turns the LEDs off). Finally the temperature is displayed
on the left 4 displays and the program starts all over again.

Application 4: Interfacing a Photocell
This application shows how to interface a photocell to the PRIMER
Trainer and gives an example program which demonstrates its
capabilities.

 Start out by getting the needed parts. These parts can be obtained
from Radio Shack if desired. The circuit is so simple (see diagram)
that you may build it without a perfboard.

PART-NUMBER PART-VALUE PART-DESCRIPTION
276-118 Photocell Cadmium sulfide
 2.2 �6 ¼ or F W resistor

8The circuit is so simple (see
diagram below) that you may build it
without a perfboard. You may
connect it to CN 3 by wire-wrapping,
soldering, or using a female
connector (be sure to disconnect
power from the PRIMER first). After
building the circuit and connecting it
to CN3, reconnect the power and
see if the board powers up correctly.
If it does not, disconnect power
again and check the circuit. Once
the board is powered up correctly,
you will want to enter the self test
mode by pressing "FUNC." then "1".
After the RAM diagnostics are
complete, the analog to digital
conversion value will be displayed on
the right two displays while a
proportional tone is emitted from the
speaker. In normal room lighting, the
number displayed should be around
20 hex, and with the photocell
darkened, the number should be
close to 00.

If the circuit appears to be working correctly, press reset and proceed to the next page.

The machine language for the program is listed below.

ADDRESS DATA DESCRIPTION
8F01 AF XRA A
8F02 32 STA 8FB2
8F03 B2
8F04 8F
8F05 26 MVI H,00
8F06 00

8F07 11 LXI D,8FA1
8F08 A1
8F09 8F
8F0A CD CALL 8F8B
8F0B 8B
8F0C 8F
8F0D 3A LDA 8FB2
8F0E B2
8F0F 8F
8F10 16 MVI D,07
8F11 07
8F12 47 MOV B,A
8F13 E6 ANI 0F
8F14 0F
8F15 C6 ADI 30
8F16 30
8F17 5F MOV E,A
8F18 0E MVI C,11
8F19 11
8F1A CD CALL 1000
8F1B 00
8F1C 10

ADDRESS DATA DESCRIPTION
8F1D 78 MOV A,B
8F1E 0F RRC
8F1F 0F RRC
8F20 0F RRC
8F21 0F RRC
8F22 E6 ANI 0F
8F23 0F
8F24 C6 ADI 30
8F25 30
8F26 15 DCR D
8F27 5F MOV E,A
8F28 0E MVI C,11
8F29 11
8F2A CD CALL 1000
8F2B 00
8F2C 10
8F2D 0E MVI C,09
8F2E 09
8F2F 1E MVI E,00
8F30 00
8F31 CD CALL 1000
8F32 00
8F33 10
8F34 7D MOV A,L
8F35 07 RLC
8F36 07 RLC
continued on next page...

ADDRESS DATA DESCRIPTION
8F37 07 RLC
8F38 E6 ANI 07
8F39 07
8F3A 3C INR A
8F3B 4F MOV C,A
8F3C 3E MVI A,FF
8F3D FF
8F3E B7 ORA A
8F3F 1F RAR
8F40 0D DCR C

8F41 C2 JNZ 8F3E
8F42 3E
8F43 8F
8F44 D3 OUT 40
8F45 40
8F46 01 LXI B,8FB1
8F47 B1
8F48 8F
8F49 DB IN 41
8F4A 41
8F4B E6 ANI 01
8F4C 01
8F4D C2 JNZ 8F5B
8F4E 5B
8F4F 8F
8F50 7D MOV A,L
8F51 02 STAX B
8F52 11 LXI D,8FA8
8F53 A8
8F54 8F
8F55 CD CALL 8F8B
8F56 8B
8F57 8F
8F58 C3 JMP 8F2D
8F59 2D
8F5A 8F
8F5B 0A LDAX B
8F5C C6 ADI F6
8F5D F6
8F5E BD CMP L
8F5F DA JC 8F64
8F60 64
8F61 8F
8F62 26 MVI H,01
8F63 01
8F64 0A LDAX B
8F65 BD CMP L
8F66 D2 JNC 8F78
8F67 78
8F68 8F
8F69 24 INR H
8F6A 25 DCR H
8F6B CA JZ 8F78
8F6C 78
8F6D 8F
8F6E 21 LXI H,8FB2
8F6F B2
8F70 8F
8F71 7E MOV A,M
8F72 3C INR A
8F73 B7 ORA A
8F74 27 DAA
8F75 77 MOV M,A
8F76 26 MVI H,00
8F77 00
8F78 11 LXI D,0000
8F79 00
8F7A 00
ADDRESS DATA DESCRIPTION
8F7B 24 INR H
8F7C 25 DCR H
8F7D C2 JNZ 8F83
8F7E 83
8F7F 8F
8F80 11 LXI D,0320

8F81 20
8F82 03
8F83 0E MVI C,10
8F84 10
8F85 CD CALL 1000
8F86 00
8F87 10
8F88 C3 JMP 8F07
8F89 07
8F8A 8F
8F8B E5 PUSH H
8F8C C5 PUSH B
8F8D EB XCHG
8F8E 46 MOV B,M
8F8F 23 INX H
8F90 16 MVI D,00
8F91 00
8F92 5E MOV E,M
8F93 0E MVI C,11
8F94 11
8F95 CD CALL 1000
8F96 00
8F97 10
8F98 14 INR D
8F99 23 INX H
8F9A 05 DCR B
8F9B C2 JNZ 8F92
8F9C 92
8F9C 8F
8F9E C1 POP B
8F9F E1 POP H
8FA0 C9 RET
8FA1 06 DATA FOR "CELL->"
8FA2 43
8FA3 45
8FA4 4C
8FA5 4C
8FA6 2D
8FA7 3E
8FA8 08 DATA FOR "--LOAD--"
8FA9 2D
8FAA 2D
8FAB 4C
8FAC 4F
8FAD 41
8FAE 44
8FAF 2D
8FB0 2D
8FB1 64 SETPOINT
8FB2 00 COUNT

Application 5: Using the PRIMER to Regulate the Speed of a DC Motor

Purpose:

To introduce the student to one method of regulating the speed of a
small DC
motor.

Goals:

1. Study formulas, data, and waveforms relating to a DC motor.

2. Build an interface circuit that will allow the PRIMER to regulate
 the speed of a particular DC motor.

3. Build a motor holding fixture that will allow one motor to be
 mechanically coupled to another.

4. Load, run, and test a program that will allow the PRIMER via the
 interface circuit to:

 A. Regulate the speed of a particular DC motor.
 B. Accept desired speed input via the on-board DIP
 switches.
 C. Display motor speed and pulse width via the on-board
 7-segment displays and LEDs respectively.

Equipment, Components, and Materials:

Equipment (required):

Qty. Description Source Part Number
1 PRIMER EMAC E600-00
1 Solderless Breadboard Radio Shack 276-175
1 PRIMER Interface Cable EMAC E600-15

Components and Materials:

Interface Circuit:

1 Transistor, 2N2222 Digi-Key PN2222A-ND
1 Transistor, 2N2907 Digi-Key PN2907A-ND
1 Resistor, 8.2K , ¼W, 5%, Carbon Film Digi-Key 8.2KQ
1 Resistor, 1.8K , ¼W, 5%, Carbon Film Digi-Key 1.8KQ
1 Resistor, 1K , ¼W, 5%, Carbon Film Digi-Key 1.0KQ
1 Resistor, 390 , ¼W, 5%, Carbon Film Digi-Key 390Q
1 Diode, 1N4005 Digi-Key 1N4005GI
1 Capacitor, 2200 µF, 16V Digi-Key P1216

Motor Load Resistors:

1 Resistor, 1.0 , ½W, 5%, Carbon Film Digi-Key 1.0H
1 Resistor, 3.3 , ½W, 5%, Carbon Film Digi-Key 3.3H
1 Resistor, 8.2 , ½W, 5%, Carbon Film Digi-Key 8.2H
1 Resistor, 33 , ½W, 5%, Carbon Film Digi-Key 33H

Motor Holding Fixture: (optional)

Qty. Description Source Part Number
1 Aluminum or Plexiglas Flat, 3.9" x 2.9" x 1/16-1/8" - -
2 Aluminum or Plexiglas Flat, 1.8" x 0.5" x 1/16-1/8" - -
8 Aluminum Spacers, Round Threaded, 4-40 x 0.75" Digi-Key J240
2 Perfboard, Glass epoxy, Pad per hole, 0.4" x 2.2" - -
2 Terminal Block, 2 position Digi-Key ED1631-ND
1 Tennis Racquet Grip Wrap (Motor Mounting Pads)SOFTGRIP STG-X
 (or equivalant)
12 Pan Head Screws, 4-40 x 1/4" Digi-Key H142
4 Pan Head Screws, 4-40 x 1/2" Digi-Key H146
16 Lock Washers, #4 Digi-Key H236
2 Motor with Gear(1.5 to 4.5VDC, 65mA @ 4.5VDC,Radio Shack 273-237
 3 pole, permanent anisotropic magnet,
 1.5 oz.in. stall torque)

General:

20"ea. Wire, Stranded, 22 Ga.,
 Red and Black Radio Shack
 278-1218
20" Wire, Wire Wrap, 30 Ga. Radio Shack 278-503

Introduction:

In this lab, we would like to program the PRIMER to regulate the speed
of a DC motor. The PRIMER will adjust motor speed by varying the
armature voltage applied to the motor. This will be accomplished by
varying the amount of time a fixed voltage is applied to the armature
within a fixed time frame. This technique is called pulse width
modulation (PWM). The time when voltage is applied to the motor will
be referred to as "motor on time" or pulse width (PW). The time
remaining in the fixed time frame would be "motor off time." The
PRIMER will read the speed of the motor by using the on-board analog
to digital (A/D) converter to measure the voltage (back EMF) generated
by the motor during motor off time. This voltage is directly
proportional to motor speed. By comparing motor speed to the desired
speed, input via the on-board DIP switches, the PRIMER can correctly
adjust motor on time to keep motor speed constant. Before we get to
the interface circuit and PRIMER program needed to regulate motor
speed, it might be helpful to look at some basic information relative
to DC motors in general and to the motor we will be regulating in
particular.

Motor Formulas:

 T = 7.04K Ia

 Vg = K N Where: K = A constant for a
 particular motor.
 = Field flux.
 Vg Ia = Armature Current.
 Ia = V - ---- Ra = Armature Resistance.
 Ra V = Armature Voltage.
 Vg = Back or Counter EMF.
 V - IaRa N = Motor Speed.

 N = -------- T = Motor Torque.
 K

These formulas show that there is a linear relationship between
applied armature voltage V and motor speed N for a given load. Since
back EMF, Vg,is directly related to motor speed there is also a linear
relationship between V and Vg. The formulas also show that:

1. Vg will always be less than V.
2. Ia, and therefore torque are greatest at low motor speed and both
 decrease as motor speed is increased.
3. When an increased load is applied to a motor it must supply more
 torque.
 This in turn means that Ia must increase. If Ia increases motor
 speed
 will decrease. The only way to return the motor to its original
 speed
 is to increase the armature voltage V.

The motor we will use in this lab is a permanent magnet type.
Permanent magnets provide the field flux . Magnetic fields setup by
current flowing in the armature windings cause the armature to rotate
inside the magnetic fields set up by the permanent magnets. To
maintain armature rotation, the direction of the armature magnetic
fields must constantly change relative to the fixed direction of the
magnetic fields of the permanent magnets. This function is provided
by brushes riding on a commutator attached to the motor shaft that
constantly changes the direction of current flow in the armature
windings as the shaft rotates. In this mode of operation, we supply
electrical energy to the motor in the form of armature current and the
motor supplies mechanical energy in the form of shaft rotation. If we
supply mechanical energy to the motor by rotating the shaft, the motor
will supply electrical energy in the form of armature current. This
armature current results from the armature windings cutting across the
magnetic lines of force set up by the magnetic fields of the permanent
magnets. This current as seen by an electrical load across the motor
terminals would be alternating (AC) if not for the rectifying action
of the commutator converting it to DC. In this mode of operation, the
motor is acting as a generator and the resulting DC voltage measured
across the motor terminals is called counter or back EMF. The
amplitude of this voltage will depend on the electrical load attached
to the motor terminals but for a given load, changes in this back EMF
will be directly proportional to changes in the speed of the rotating
armature.

Motor Waveforms:

If we use a pulse generator to apply pulse width modulation to the
circuit of Figure 1 and observe the resulting A/D signal on an
oscilloscope, we would see the waveforms of Figure 2. The three
regions of interest in the waveforms are marked as A, B, and C.
The period of the PWM signal is A + B + C. The motor on time is A and
the motor off time is B + C. Region B in waveform B is a negative
voltage generated by the collapsing magnetic field in the armature
windings when armature current is cut off at the beginning of motor
off time. If this voltage were not clamped by diode D1 to that coul
about -0.7V, it would be a very large negative voltage d potentially
damage the PRIMER A/D circuitry. Region C in Waveform B is the back
EMF generated by the armature rotating in the magnetic field of the

permanent magnets during motor off time. If the pulse width of the
PWM signal is now increased we would see the waveforms of Figure 3.
The motor speed will noticeably increase and the amplitude of the
back EMF of Region C will be greater. Two things are of interest in
observing the motor waveforms that will have a bearing on our motor
controller program.

1. The back EMF voltage is not "straight line smooth" as we would
like it to be, but rather is a varying signal riding on a DC level.
The amplitude of the varying signal seems to increase with increasing
motor speed (increased pulse width). We could filter this with our
circuitry but it would be difficult since we would not want to filter
the motor on time voltage. This would introduce an unwanted error in
the back EMF. A better solution would be to digitally filter (average)
the back EMF by totalling 16 back EMF samples and then dividing the
total by 16.

2. The point in the PWM period where we will begin to sample the
back EMF must be carefully chosen to avoid sampling the motor on time
voltage or the negative voltage transition. A sample window must be
set up that will start late enough to assure back EMF will be present
during maximum PW, but not so late that the program can't finish
executing the required amount of code before the start of the next PWM
period.

Motor Speed vs. Pulse Width and the Motor as an Integrator:

If we applied increasing pulse widths to the circuit of Figure 1,
allowed the motor to accelerate up to speed and recorded the back EMF
for each pulse width for various motor loads and plotted the results
we would get a graph similar to the one in Figure 4. You might be
surprised to see that the relationship between applied pulse
width and back EMF is not linear for many of the curves. The curves
appear to go from logarithmic for an unloaded motor toward linear as
motor load is increased. This seems to contradict the results we
would predict if we use the motor formulas we looked at earlier.
The reason for this is that we are asking the motor to integrate the
PWM signal into an armature voltage. We would expect that:

This is a linear relationship but this relationship only holds up if
the acceleration (charge) and deceleration (discharge) times in the
motor (integrator) are close to equal. The acceleration time (charge
time) will be much shorter than deceleration time at no motor load
because we are driving the armature up to speed and then allowing the
armature to decelerate at its own pace. Deceleration is strictly load
dependent. If there is no load on the motor the deceleration time is
long, (relative to acceleration time), the integrator discharge time
is long, and the curve is logarithmic. As the motor load increases
(decreasing RL), the acceleration (charge) and deceleration
(discharge) times become more nearly equal, the motor begins to
act more like a true integrator, the armature voltage to PW
relationship becomes linear, and the graph becomes linear. To state
the previous discussion another way, if the linear changes in PW
were producing linear changes in armature voltage, the motor would be
responding linearly. Look at the graph in Figure 5. Notice the motor
speed response vs. pulse width increase is linear, independent of
motor load. These plots were produced by integrating the PWM signal
externally and applying the resulting voltage via a power op-amp to
the motor. Now the motor is behaving as the formulas predict because

it is not required to integrate the PWM signal. Since our program
will allow the PRIMER to measure motor speed with the A/D converter
and then adjust the pulse width to the value necessary to obtain the
desired speed, you might imagine that nonlinearity in the motor speed
curves is unimportant.

Nonlinearity can make it more difficult for our program to control
motor speed. Consider the curve for an unloaded motor (motors
uncoupled) in Figure 4. Notice that a pulse width change of only 1
count, say from 6 to 7, can cause a speed change of more than 10.
This means it will be difficult if not impossible for our program to
make fine adjustments in motor speed since it can only make
incremental (not fractional) changes to pulse width. Now
look at the curve in Figure 4 for a motor load of 8.1 ohms. Now
incremental changes in pulse width result in incremental changes in
motor speed and as a result much finer adjustment of motor speed will
be possible. So even though our program will do a fair job
controlling motor speed when the motor is operating on one of the non
linear curves, it will do a much better job controlling speed when the
motor is operating on a more linear curve.

Motor Interface Circuit Description and Assembly:

Capacitor C1 in Figure 6 provides energy during times of high armature
current to prevent fluctuations of the 5V supply. Resistor R1 sets
the base current of transistor Q1 when PWM is high. Transistor Q1
provides base current for transistor Q2 when PWM is high. Q2 base
current is set by resistors R2 and R3. Resistor R2 prevents Q2
conduction as a result of Q1 leakage or low level transients. Q2
provides armature current for motor M1 when PWM is high. Diode D1
clamps the negative voltage spike generated by the collapsing magnetic
field of the armature at Q2 turn off. Resistor R4 limits the current
into the A/D converter during the negative voltage spike. Two
advantages of using pulse width modulation applied directly to the
motor to control motor voltage are:
 1. Relatively simple interface circuitry.
 2. There is much less power dissipation because the controlling
 devices are switches (on or off).

The circuit in Figure 6 consists of easily available, inexpensive
components. The circuit can be constructed on a solderless breadboard
and wired to the PRIMER and motor using the PRIMER Interface Cable.
The PWM and A/D connections can be wire-wrapped from the PRIMER CN3
connector to wire-wrap posts or stiff wires pushed into the
breadboard. The motor leads should be short lengths (10 in.max.) of
22 ga. wire soldered to the motor tabs (no polarity) and then tinned
on the other end so they will push into the breadboard holes.

Motor Holding Fixture:

A convenient way of loading one motor is to have it drive another
motor which can in turn feed generated current through various load
resistors to increase the load on the driving motor. If the motor you
are using has a gear attached to the shaft, two motors can be coupled
as illustrated in the motor fixture drawing. If your motor does not
have a gear on the shaft, you can try coupling two motors with a short
length of plastic tubing that will slip onto and hold tightly to the
motor shafts. With this scheme the motors will be mounted in-line
instead of offset in the motor fixture. Other motor loading schemes

can be used such as using the motor to drive a propeller or placing a
friction load against the motor shaft (holding your finger against
the shaft at different degrees of pressure will do). You can choose
your own method for mounting, coupling, and loading the motors but
remember to construct fixtures from non-ferrous material because of
the permanent magnets in the motors.

Program Description:

Refer to flowcharts 1 and 2 for a discussion of the motor controller
program. The program divides the PWM period into 64 time slices or
t_slices. Each t_slice is 160 µs long. The t_slices are numbered from
0-63. A variable called t_slice is incremented in an interrupt
handler on every 7.5 interrupt. Continuous pulses 160 µs apart from the
timer chip initiate each 7.5 interrupt. This interrupt handler also
manages the PWM output. If pulse width is less than time slice, PWM
output (output port bit 0) is high, otherwise it's low. The scheduling
of events is illustrated below:

New
Event Minimum Maximum Sample
Period
 PW PW Mark
Starts
 | | | | |
|

 0 3 50 52 63
0
 Time Slice

The time between time slice 0 and sample mark is used to display speed
and pulse width. These are displayed on the 7-segment LED display and
LEDs 7-1 respectively. Notice there are upper and lower limits for
pulse width. The time between maximum PW and sample mark is reserved
to allow the negative voltage spike to pass when PW is maximum. The
time between sample mark and end of period is used to sample the back
EMF, average 16 samples, and calculate a new pulse width based on the
current speed and the desired speed (set with the PRIMER DIP
switches). The program consists of two programs, a background program
and a foreground program. The background program executes every time
the microprocessor receives an interrupt pulse on the 7.5 interrupt
pin. The timer chip is set by the initialization part of our program
to provide a pulse to the 7.5 interrupt pin every 160 µs. The
background program has two functions.
 1. To increment the time slice each time it executes. The only
 exception to this is when time slice reaches a maximum count
 of 63 at which time it is set back to zero.
 2. To set the PWM signal (output port bit 0) high or low. If
 time slice is less than pulse width the output is high,
 otherwise it is low.

The foreground program monitors time slice and waits till it's 0.
Then it displays motor speed on the leftmost four 7-segment LED digits
and it displays pulse width in a bar graph fashion on LEDs 7-1 as
follows:

 Pulse Width LEDs On

 0-7 (0% - 11%) 1
 8-15 (12% - 23%) 1, 2
 16-23 (24% - 36%) 1, 2, 3
 24-31 (37% - 48%) 1, 2, 3, 4
 32-39 (49% - 61%) 1, 2, 3, 4, 5
 40-47 (62% - 73%) 1, 2, 3, 4, 5, 6
 48-50 (74% - 78%) 1, 2, 3, 4, 5, 6, 7

The foreground program then waits for time slice to equal sample mark.

Sample mark is set to accommodate the longest possible pulse width
plus time for the negative voltage transition (after motor current
cutoff) to expire. At sample mark the back EMF is sampled and added to
a total of 16 such samples. If 16 samples have not yet been totaled
the program repeats by going back and waiting for time slice to equal
0. When 16 samples have been totaled, the total is divided by 16 to
produce an average speed (it is this average speed that will later be
displayed on the 7-segment display after time slice 0). The average
speed is then subtracted from the speed set on the PRIMER DIP switches
to produce an error term. If the error is < -1, the pulse width is
decremented. If the error is > 1, the pulse width is incremented.
If the error is -1, 0, or 1, the pulse width is unchanged. The pulse
width is then range checked. If the pulse width is less than minimum
(3), it is set to minimum. If the pulse width is greater than maximum
(50), it is set to maximum. Otherwise the pulse width is unchanged.

The entire process then repeats by going back and again waiting for
time slice 0. To test the motor speed program wire the circuit of
Figure 6 and connect the PRIMER and drive motor M1 to the circuit as
previously described. Couple the second motor M2 if available to the
drive motor M1. Motor M2 if used should be unloaded (no RL across its
terminals). Set the PRIMER DIP switches for a speed of 20. Load the
motor control program into the PRIMER and run the program. The motor
will accelerate to speed and the PW and average speed will be
displayed as previously described. Load the drive motor by placing an
8.2 , ½W resistor across the terminals of motor M2 or by hand
friction. The motor speed will decrease at first, as indicated by the
7-segment LED display. Then the PW will increase, as indicated by the
7 LEDs, to bring the motor speed back to 20. Now remove the 8.2 load
resistor from motor M2 or the friction source. The speed of the drive
motor will increase suddenly and the PW will begin

 to decrease to bring the motor speed back to 20.

Use the curves of Figure 4 and load resistors for various speeds set in on the
DIP switches to exercise the motor speed control program. Notice from the curves
of Figure 4 that there are limits on the maximum speed attainable for various
motor loads. If you try to request a motor speed greater than the motor can
provide for a given load, the program will simply increase the pulse width to
maximum to get the maximum speed possible. Note that the following program text
can be cut out and assembled.

;---
; This program regulates the speed of a DC motor by....
; [1] Averaging 16 samples of back EMF during motor off time.
; [2] Generating an error term (DIP switch - average EMF).
; [3] Using the error term to adjust the pulse width.
; [4] Using the resulting pulse width to pulse width modulate
; (PWM) the motor.

;
; WARNING: Use a 9V supply with a current limit of 1000 mA or
; more with this lab. The standard 500mA supply will
; be damaged if it is used with this lab.
;
MOS: EQU 1000H ;MOS SERVICES ADDRESS.
PWM_PORT: EQU 11H ;DIGITAL OUTPUT PORT.
DIP_SW: EQU 12H ;DIP SWITCH PORT.
SERV09: EQU 09H ;MOS SERVICE.ADCIN => L.
SERV13: EQU 13H ;MOS SERVICE.DE => 7-SEG DISPLAY.
PW_MIN: EQU 03H ;MINIMUM PW. T=160uS X PW_MIN
PW_MAX: EQU 32H ;MAXIMUM PW. T=160uS X PW_MAX
MAX_SLICE: EQU 3FH ;MAXIMUM NUMBER OF TIME SLICES.
 ;SETS PWM PERIOD.
 ;T=160uS X MAX_SLICE.
SMARK: EQU 34H ;TIME SLICE WHERE BACK EMF
 ;SAMPLE WILL BE TAKEN.
VEC7HLF: EQU 0FFE9H ;7.5 INTERRUPT VECTOR.
SCALELO: EQU 35H ;MODE/SCALER FOR TIMER,
SCALEHI: EQU 11000000B ;CONTINUOUS PULSES EVERY 160uS.
TIMERLO: EQU 14H ;TIMER PORT.
TIMERHI: EQU 15H ;TIMER PORT.
TIMCMD: EQU 0CDH ;TIMER CONTROL COMMAND.
CMDREG: EQU 10H ;TIMER CONTROL PORT.
INTMASK: EQU 1AH ;INTERRUPT MASK.

 ORG 0FF01H

 DI
 LXI H,SLICER ;POINT 7.5 INTERRUPT
 SHLD VEC7HLF ;VECTOR TO SLICER.
 MVI A,SCALELO ;SET UP TIMER FOR
 OUT TIMERLO ;CONTINUOUS PULSES
 MVI A,SCALEHI ;AT DESIRED INTERRUPT
 OUT TIMERHI ;RATE.
 MVI A,TIMCMD
 OUT CMDREG
 MVI A,INTMASK
 SIM
 EI

PWM_MOTOR:
 LXI H,0000H ;REG H = TOTAL
 MVI B,10H ;REG B = SAMPLE COUNT.

CHKZERO:
 LDA T_SLICE ;TIME SLICE = 0 ?
 CPI 00H
 JNZ CHKZERO ;NO.GO CHECK SMARK.
 MVI D,00H ;DISPLAY SPEED.
 MOV E,C ;C = SPEED.
 PUSH B
 MVI C,SERV13
 CALL MOS

 POP B
 LDA PULSE_WIDTH
 MOV D,A ;DISPLAY PW.
 MVI E,0FFH ;E = MASK.
 ORA E ;CLEAR CARRY.
ROT_MASK:
 RAL ;ROTATE 0 TO MASK.
 MOV E,A ;SAVE MASK.
 MOV A,D ;GET PW.
 SUI 08H ;PW = PW - 8.
 MOV D,A ;SAVE RESULT TO D.
 MOV A,E ;GET MASK.
 JNC ROT_MASK ;PW STILL POS. ?
 DI ;DISABLE INTERRUPT.
 LDA IMAGE ;GET IMAGE.
 RAR ;SAVE BIT 0.
 MOV A,E ;GET MASK.
 RAL ;7 BITS MASK + BIT 0.
 STA IMAGE ;TO IMAGE.
 EI ;ENABLE INTERRUPT.
CHK_SMARK:
 LDA T_SLICE
 CPI SMARK ;TIME SLICE = SMARK ?
 JNZ CHK_SMARK ;NO.WAIT TILL IT IS.
 XCHG ;DE = TOTAL.
 PUSH B ;SAMPLE BACK EMF.
 MVI C,SERV09
 CALL MOS
 POP B
 MVI H,00H ;HL = SAMPLE.
 DAD D ;HL = TOTAL + SAMPLE.
 DCR B ;DEC. SAMPLE COUNT.
 JNZ CHKZERO ;IF NOT 0, CHK 0 T_SLICE.

DIV_MORE: DAD H ;HL*16/256=HL/16, SO...
 DAD H ;...4 DAD H's MAKES HL*16...
 DAD H ;..AFTER THIS H=HL/256 (THINK ABOUT IT)
 DAD H ;SPEED=TOTAL / MAX SAMP (16).
 MOV C,H ;STORE SPEED.
 IN DIP_SW ;GET DESIRED SPEED.
 ANI 00111111B ;DES.SPEED 6 BITS MAX.
 SUB H ;SWITCH-SPEED=ERROR.
 LXI H,PULSE_WIDTH
 JM DECPW_CHK ;ERROR = -. DEC PW ?
 CPI 2 ;ERROR < 2 ?
 JC PW_RANGE ;YES. NO PW CHANGE.
 INR M ;NO. INC PW.
 JMP PW_RANGE ;RANGE CHECK PW.
DECPW_CHK:
 CPI 0FFH ;ERROR = -1.
 JZ PW_RANGE ;YES. RANGE CHECK PW.
 DCR M ;NO. DEC PW.
PW_RANGE:
 MVI A,PW_MIN ;PW < MIN ?

 CMP M
 JC MAX_CHK ;NO. CHECK MAX.
 MOV M,A ;YES. PW = MIN.
MAX_CHK:
 MVI A,PW_MAX ;PW > MAX ?
 CMP M
 JNC PWM_MOTOR ;NO. PW OK.
 MOV M,A ;YES. PW = MAX.
 JMP PWM_MOTOR ;START AGAIN.

;---
;.......................SLICER..................................
;SLICER IS AN INTERRUPT HANDLER FOR THE 7.5 INTERRUPT.
;SLICER CONTROLS A TIME MARKER (T_SLICE) BY ADJUSTING IT FROM
;0 TO MAX_SLICE IN EQUAL TIME INCREMENTS ON EACH 7.5 INTERRRUPT.
;SLICER ALSO CONTROLS THE WIDTH OF THE PULSE USED TO DRIVE THE
;MOTOR BY COMPARING THE VALUE OF PULSE_WIDTH TO THAT OF T_SLICE
;TO DETERMINE IF THE PULSE SHOULD BE HIGH OR LOW.
;PULSE HIGH => T_SLICE < PULSE_WIDTH.
;PULSE LOW => T_SLICE >=PULSE_WIDTH.
;---

SLICER:
 PUSH PSW ;SAVE REGISTERS.
 PUSH H
 LXI H,T_SLICE ;H POINTS TO T_SLICE.
 INR M ;INCREMENT T_SLICE
 MVI A,MAX_SLICE
 CMP M ;T_SLICE = MAX_SLICE ?
 JNZ PWM ;NO. T_SLICE OK.
 MVI M,00H ;YES. T_SLICE = 0.
PWM:
 MOV A,M ;A = T_SLICE.
 LXI H,PULSE_WIDTH ;M = PULSE WIDTH.
 CMP M ;T_SLICE < PULSE WIDTH ?
 LXI H,IMAGE ;M = IMAGE.
 MOV A,M ;GET IMAGE.
 RAR ;CY => BIT 7.
 RLC ;BIT 7 => BIT 0.
 MOV M,A ;STORE IMAGE.
 OUT PWM_PORT ;OUTPUT IMAGE.
 POP H ;RECOVER REGISTERS.
 POP PSW
 EI
 RET ;RETURN

T_SLICE: DB 00H
PULSE_WIDTH: DB PW_MIN
IMAGE: DS 01H
 END
;--

OBJECT/MACHINE CODE

ADDRESS DATA INSTRUCTION
FF01 F3 DI
FF02 21 LXI H, FF92
FF03 92
FF04 FF
FF05 22 SHLD FFE9

FF06 E9
FF07 FF
FF08 3E MVI A, 35
FF09 35
FF0A D3 OUT 14
FF0B 14
FF0C 3E MVI A, C0
FF0D C0
FF0E D3 OUT 15
FF0F 15
FF10 3E MVI A, CD
FF11 CD
FF12 D3 OUT 10
FF13 10
FF14 3E MVI A, 1A
FF15 1A
FF16 30 SIM
FF17 FB EI
FF18 21 LXI H, 0000
FF19 00
FF1A 00
FF1B 06 MVI B, 10
FF1C 10
FF1D 3A LDA FFB2
FF1E B2
FF1F FF
FF20 FE CPI 00
FF21 00
FF22 C2 JNZ FF1D
FF23 1D
FF24 FF
FF25 16 MVI D, 00
FF26 00
FF27 59 MOV E,C
FF28 C5 PUSH B
FF29 0E MVI C, 13
FF2A 13
FF2B CD CALL 1000
FF2C 00
FF2D 10
FF2E C1 POP B
FF2F 3A LDA FFB3
FF30 B3
FF31 FF
FF32 57 MOV D,A
FF33 1E MVI E, FF
FF34 FF
FF35 B3 ORA E
FF36 17 RAL
FF37 5F MOV E,A
FF38 7A MOV A,D
FF39 D6 SUI 08
FF3A 08
FF3B 57 MOV D,A
FF3C 7B MOV A,E
FF3D D2 JNC FF36
FF3E 36
FF3F FF
FF40 F3 DI
FF41 3A LDA FFB4

FF42 B4
FF43 FF
FF44 1F RAR
FF45 7B MOV A,E
FF46 17 RAL
FF47 32 STA FFB4
FF48 B4
FF49 FF
FF4A FB EI
FF4B 3A LDA FFB2
FF4C B2
FF4D FF
FF4E FE CPI 34
FF4F 34
FF50 C2 JNZ FF4B
FF51 4B
FF52 FF
FF53 EB XCHG
FF54 C5 PUSH B
FF55 0E MVI C, 09
FF56 09
FF57 CD CALL 1000
FF58 00
FF59 10
FF5A C1 POP B
FF5B 26 MVI H, 00
FF5C 00
FF5D 19 DAD D
FF5E 05 DCR B
FF5F C2 JNZ FF1D
FF60 1D
FF61 FF
FF62 29 DAD H
FF63 29 DAD H
FF64 29 DAD H
FF65 29 DAD H
FF66 4C MOV C,H
FF67 DB IN 12
FF68 12
FF69 E6 ANI 3F
FF6A 3F
FF6B 94 SUB H
FF6C 21 LXI H,FFB3
FF6D B3
FF6E FF
FF6F FA JM FF7B
FF70 7B
FF71 FF
FF72 FE CPI 02
FF73 02
FF74 DA JC FF81
FF75 81
FF76 FF
FF77 34 INR M
FF78 C3 JMP FF81
FF79 81
FF7A FF
FF7B FE CPI FF
FF7C FF
FF7D CA JZ FF81

FF7E 81
FF7F FF
FF80 35 DCR M
FF81 3E MVI A,03
FF82 03
FF83 BE CMP M
FF84 DA JC FF88
FF85 88
FF86 FF
FF87 77 MOV M,A
FF88 3E MVI A,32
FF89 32
FF8A BE CMP M
FF8B D2 JNC FF18
FF8C 18
FF8D FF
FF8E 77 MOV M,A
FF8F C3 JMP FF18
FF90 18
FF91 FF
FF92 F5 PUSH PSW
FF93 E5 PUSH H
FF94 21 LXI H,FFB2
FF95 B2
FF96 FF
FF97 34 INR M
FF98 3E MVI A,3F
FF99 3F
FF9A BE CMP M
FF9B C2 JNZ FFA0
FF9C A0
FF9D FF
FF9E 36 MVI M,00
FF9F 00
FFA0 7E MOV A,M
FFA1 21 LXI H,FFB3
FFA2 B3
FFA3 FF
FFA4 BE CMP M
FFA5 21 LXI H,FFB4
FFA6 B4
FFA7 FF
FFA8 7E MOV A,M
FFA9 1F RAR
FFAA 07 RLC
FFAB 77 MOV M,A
FFAC D3 OUT 11
FFAD 11
FFAE E1 POP H
FFAF F1 POP PSW
FFB0 FB EI
FFB1 C9 RET
FFB2 00 (time slice)
FFB3 03 (pulse width)
FFB4 xx (output port, undefined leave blank)

→

APPLICATION 6-1

Application 6: External Multiplexed Display and Keypad Decoder

Purpose: To demonstrate and emulate the functions of a keypad and two digit
LED display controller.

Goals:
1. Build and test a keypad and numeric LED display interface.
2. Load a program that will demonstrate the numeric LED display

interface.
3. Modify the program and load additional code which will demonstrate

the keypad decoder.

Component Description Digi-Key part number
2) 2N3904 or 2N2222 2N3904-ND or 2N2222-ND
1) 74ls240 DM74LS240N-ND
1) 4x4 matix keypad GH5004-ND
1) 2 digit LED display P355-ND
9) 150 ohm 5% 1/4 watt resister
1) 1 Kohm 5% 1/4 watt resister

This application will be demonstrated in two phases: with the display only,
and then with the keypad and display.

Display Controller Circuit DescriptionDisplay Controller Circuit Description

To drive an external 7 segment
display using the trainer, the
8 output lines (numbered 0 to
7) would be the obvious
choice. This would provide
control for each of the 7
elements leaving one output
line free. What if we want to
drive two digits?. We need 7
more outputs which we don't
have. The answer to this
problem is to use a
multiplexed scheme of driving
the digits.

We can drive the anodes of
each of the elements of the
pair of 7 segment displays
with the same outputs (one
output per matching pair of
segments) and use the 8th
(bit 7) to select which
display will turn on by
driving the cathode of the
desired digit to ground. This
will allow us to display data
on the left digit and turn the right one off, and vice-versa. If this is
done rapidly enough it will appear as if both digits are showing
simultaneously, due to "persistence of vision" in the human eye.

To lessen the load on the output port, the outputs drive a 74LS240 tri-state
inverting buffer and the outputs of this go to the anodes of both digits of
the display. The buffer's two enable lines are tied to the Primer's digital
to analog (D/A) output and they tri-state the outputs when the D/A is output
is 5V. This turns off the display which will be necessary when including
the keypad in the circuit. When the D/A output is 0V the buffer is enabled

APPLICATION 6-2

and the outputs go to the opposite logic level as their respective inputs.

If the buffer is enabled, bit 7 selects which display to turn on. If bit 7
is high, the voltage applied to the base of Q1 will bring the cathode for
the left display to ground, causing it to turn on. When this happens, the
base of Q2 is pulled to ground causing it to turn off, which turns off the
display on the right. When bit 7 is low, this turns off Q1 which allows
the base voltage of Q2 to rise and turn on the display on the right.

;
; External Multiplexed Display and Keypad Decoder program.
;
OPORT EQU 11H ;OUTPUT PORT
IPORT EQU 12H ;INPUT PORT
MOS EQU 1000H ;MOS CALL ADDRESS
DACSRV EQU 0EH ;D/A SERVICE

ORG 0FF01H

LOOP: IN IPORT ;READ DIP SWITCHES
MOV B,A
CALL HEXOUT ;DISPLAY B
JMP LOOP

;
; Display the hex value of B on the LEDs. This routine must be
; called repeatedly in order for the data to be shown continuously,
; since it works on the principle of persistance of vision. The right
; digit is turned on and off first, then the left digit is turned on and off.
;
HEXOUT: MOV A,B ;GET VALUE

ANI 0FH ;MASK OFF UPPER NIBBLE
CALL BIN7SG ;CHANGE TO 7 SEG VALUE
OUT OPORT ;SEND TO PORT
CALL FLSHDG ;TURN ON DISPLAY MOMENTARILY

MOV A,B ;GET ORIGINAL VALUE
ANI 0F0H ;NOW MASK OFF LOWER NIBBLE
RRC
RRC
RRC
RRC
CALL BIN7SG ;CHANGE TO 7 SEG VALUE
ORI 80H ;SET BIT 7 SO LEFT DIGIT IS DISPLAYED
OUT OPORT ;SEND TO PORT
CALL FLSHDG ;TURN ON DISPLAY MOMENTARILY
RET

;
; Change the binary number in A to its 7 seg. output pattern.
;
BIN7SG: PUSH H

PUSH D
LXI D,TAB7SG ;POINT TO START OF TABLE
MVI H,0
MOV L,A ;HL = OFFSET INTO TABLE
DAD D ;ADD TABLE ADDR TO OFFSET
MOV A,M ;GET OUTPUT PATTERN
POP D
POP H
RET

;
; TRANSLATE TABLE FOR LED OUTPUT
;
TAB7SG: DB 40H,79H,24H,30H

DB 19H,12H,02H,78H
DB 00H,18H,08H,03H
DB 46H,21H,06H,0EH

;
; This flashes on and off the digit selected by bit 7 sent to OPORT.

APPLICATION 6-3

;
FLSHDG: PUSH D

PUSH PSW
CALL LEDON ;ENABLE LEDS
LXI D,0FFH

DELAY1: DCX D
MOV A,D
ORA E
JNZ DELAY1
CALL LEDOFF ;DISABLE LEDS
POP PSW
POP D
RET

;
; LEDON, LEDOFF, TURN ON/OFF THE LEDS THROUGH THE D/A OUTPUT
; 5V OUT TRI-STATES THE OUTPUTS OF THE 74LS240
; 0V OUT ENABLES THE OUTPUTS OF THE 74LS240
;
LEDON: MVI E,0 ;SEND OUT 0V

JMP LEDCTL
LEDOFF: MVI E,0FFH ;SEND OUT 5V
LEDCTL: MVI C,DACSRV ;D/A SERVICE

CALL MOS
RET

Display Controller Software Description

The program will be described from the lowest level subroutine to the main
routine.

LEDON, LEDOFF
The subroutine LEDON turns on the selected display by sending 0V from the
D/A into the 74LS240 enables and LEDOFF turns them off by sending 5V.

FLSHDG
This CALLs LEDON, goes into a delay loop and then CALLs LEDOFF. This causes
the display selected by bit 7 to display for the period of time of the
delay.

BIN7SG
This converts the number in the accumulator (A), which is in the range of 0
to F hex, to its corresponding binary pattern which will be used by another
routine to illuminate the desired display segments. Since each element of a
digit is controlled by bits 0 to 6 the bit pattern sent to the output port
will form specific patterns. The table TAB7SG used by this routine has
these bit patterns for digits 0 to F.

HEXOUT
This displays the hex value of the B register on the displays. This routine
must be called repeatedly in order for the data to appear to be shown
continuously, since it works on the principle of persistence of vision. The
upper 4 bits of B are masked off leaving only the lower 4 bits which are
converted to the appropriate binary pattern using BIN7SG and and this
pattern is sent to the output port. Since the patterns received from BIN7SG
always have bit 7 cleared, this will turn on the digit on the right when
FLSHDG is called. To display the left digit, the lower 4 bits are masked
off of B and the upper 4 are moved to the lower 4 bit positions. This value
is converted using BIN7SG, bit 7 of the result is set to 1, and it is sent
to the output port. This time when FLSHDG is called, the left digit will be
displayed since bit 7 is set.

The main loop of this first example gets its input from the DIP switches,
copies the value to B, CALLs HEXOUT and loops back to read the DIP switches
again.

APPLICATION 6-4

Using the ProgramUsing the Program

Build the circuit and then check your work. Now load the following program
into memory and run it. With all the DIP switches in the ON position the
port will input 00 and this should be shown on the displays. The binary
value input to the DIP switches will be shown in hex on the displays (refer
to the section at the beginning of this manual which discusses binary to hex
conversion). Set the DIP switches so one digit is different than the other.

It appears that both digits are showing at the same time. To show what is
really happening, we can increase the delay in FLSHDG so we can see what is
really happening. Change the byte at FF4B from 00 to FF and run the program
again. The displays can now be seen alternating left to right with each
change in bit 7. Note that the PRIMER's digital output LEDs reflect the
data sent to the output port (output bits of 0 turn on these LEDs). Watch
the binary pattern on bits 6 to 0 as the digits change.

Move the DIP switches to the off position so that "FF" is displayed (this
guarantees that none of the inputs are being pulled low), stop the program
and change the byte at FF4B back to 00 again.

ADDRESSADDRESS DATADATA DESCRIPTIONDESCRIPTION FF2D 00
FF01 D3 IN 12 FF2E 6F MOV L,A
FF02 12 FF2F 19 DAD D
FF03 47 MOV B,A FF30 7E MOV A,M
FF04 CD CALL FF0A FF31 D1 POP D
FF05 0A FF32 E1 POP H
FF06 FF FF33 C9 RET
FF07 C3 JMP FF01
FF08 01
FF09 FF
FF0A 78 MOV A,B
FF0B E6 ANI 0F
FF0C 0F
FF0D CD CALL FF27
FF0E 27
FF0F FF
FF10 D3 OUT 11
FF11 11
FF12 CD CALL FF44
FF13 44
FF14 FF
FF15 78 MOV A,B
FF16 E6 ANI F0
FF17 F0
FF18 0F RRC
FF19 0F RRC
FF1A 0F RRC
FF1B 0F RRC
FF1C CD CALL FF27
FF1D 27
FF1E FF
FF1F F6 ORI 80
FF20 80
FF21 D3 OUT 11
FF22 11
FF23 CD CALL FF44
FF24 44
FF25 FF
FF26 C9 RET
FF27 E5 PUSH H
FF28 D5 PUSH D
FF29 11 LXI D,FF34
FF2A 34
FF2B FF
FF2C 26 MVI H,00

APPLICATION 6-5

ADDRESSADDRESS DATADATA DESCRIPTIONDESCRIPTION
FF34 40 (PATTERN FOR "0")
FF35 79 (PATTERN FOR "1")
FF36 24 (PATTERN FOR "2")
FF37 30 (PATTERN FOR "3")
FF38 19 (PATTERN FOR "4")
FF39 12 (PATTERN FOR "5")
FF3A 02 (PATTERN FOR "6")
FF3B 78 (PATTERN FOR "7")
FF3C 00 (PATTERN FOR "8")
FF3D 18 (PATTERN FOR "9")
FF3E 08 (PATTERN FOR "A")
FF3F 03 (PATTERN FOR "B")
FF40 46 (PATTERN FOR "C")
FF41 21 (PATTERN FOR "D")
FF42 06 (PATTERN FOR "E")
FF43 0E (PATTERN FOR "F")
FF44 D5 PUSH D
FF45 F5 PUSH PSW
FF46 CD CALL FF58
FF47 58
FF48 FF
FF49 11 LXI D,00FF
FF4A FF
FF4B 00
FF4C 1B DCX D
FF4D 7A MOV A,D
FF4E B3 ORA E
FF4F C2 JNZ FF4C
FF50 4C
FF51 FF
FF52 CD CALL FF5D
FF53 5D
FF54 FF
FF55 F1 POP PSW
FF56 D1 POP D
FF57 C9 RET
FF58 1E MVI E,00
FF59 00
FF5A C3 JMP FF5F
FF5B 5F
FF5C FF
FF5D 1E MVI E,FF
FF5E FF
FF5F 0E MVI C,0E
FF60 0E
FF61 CD CALL 1000
FF62 00
FF63 10
FF64 C9 RET

Scanning the KeypadScanning the Keypad

To read a 4 by 4 matrix keypad we need 4 inputs and 4 outputs. The 4 inputs
will check for a key pressed in one of the 4 columns in the current row
selected by the 4 outputs. Since all of the outputs are currently being
used, where do we get 4 more? We will use the same ones used for the
displays but we will only use them while the displays are off (this is why
we needed the circuitry to turn off both displays).

The subroutine KEYSCN (shown below), which will be added to the previous
program, will be CALLed while the digits are off so that the changes in the
output port will not be visible. When a key is pressed, the routine will
modify the B register by shifting it left 4 bits and putting the binary
value of the key into the lower 4 bits.

When KEYSCN is CALLed, output bits 0 to 3 are set to 0 to select all 4 rows

APPLICATION 6-6

at once. When the input port is read and all of the lower 4 bits are 1,
this indicates no key is pressed and the routine is exited without changing
B. If any of the lower 4 bits are 0 this indicates a key has been pressed.
The routine then selects 1 row at a time (by setting 1 of the output bits to
0 and the others to 1) until the input port reads a 0 on any of the lower 4
bits. When this happens, the row is found, and the column is found by
finding which input port bit was 0. When the row and column is found it is
translated to a value from 0 to F hex. The B register is shifted 4 bits to
the left and this new value is put in the lower 4 bits and the routine
exits.

There is another feature in KEYSCN which keeps a key that is being held
closed from modifying the B register more than 1 time. When a key is
pressed, the H register is loaded with a value which defines the minimum
number of times KEYSCN must be CALLed while no key is pressed before it will
recognize another key press. For example, when a key is pressed, B is
modified by the new key value and H is loaded with 20 hex before exiting
KEYSCN. On the next entry to KEYSCN the keypad will be examined to see if a
key has been pressed and if one is pressed, H is not decremented and the
routine is exited without changing B. If no keys are being pressed, H is
decremented and the routine is exited without changing B. If no keys are
pressed for 32 (20 hex) CALLs of KEYSCN then H will be 0 and any key pressed
after this time will affect the B register, and again, H will be loaded with
20 hex.

;
; This routine checks for a key pressed and if there is one, register B
; is shifted left one nibble and the key value is put in the low nibble.
; The subsequent CALLs after a CALL that affected B, will not affect B
; again until no key has been pressed for 20 CALLs and then a key is
; pressed again. This prevents a single key press from being
; interpreted as more than one.
;
; On entry and exit: H=debounce counter
;
DBOUNCE EQU 20 ;NUMBER OF CALLs FOLLOWING A KEY PRESS
KEYSCN: XRA A ;A=0

OUT OPORT ;SELECT ALL 4 ROWS
IN IPORT ;READ ALL 4 ROWS OF KEYPAD
ANI 0FH ;MASK OFF UPPER 4 BITS
CPI 0FH ;IF 0FH THEN NO KEYS PRESSED
JNZ KEYSC1 ;SKIP IF KEY READY

; NO KEY PRESSED, SO DEC. THE DEBOUNCE (IF>0) AND EXIT
INR H
DCR H ;IS DEBOUNCE 0?
RZ ;RETURN IF YES
DCR H ;DEC ONCE MORE
RET

KEYSC1: INR H
DCR H
RNZ ;IF DEBOUNCE <> 0 EXIT

; SCAN FOR SPECIFIC ROW
PUSH D
MVI E,01111111B ;ROW SCAN VALUE (WILL BE ROTATED)
MVI D,-4 ;ROW ADDER (+4=0)

KEYSC2: MOV A,E ;GET ROW SCAN VALUE
RLC ;ROTATE IT
OUT OPORT ;SEND ROW SCAN TO OUTPUT PORT
MOV E,A ;SAVE BACK NEW ROW SCAN

MOV A,D ;GET ROW ADDER
ADI 4 ;INC ROW ADDER BY 4
MOV D,A ;SAVE IT

APPLICATION 6-7

IN IPORT ;SEE IF THIS ROW HAS CHAR READY
ANI 0FH ;MASK OFF UPPER
CPI 0FH
JZ KEYSC2 ;LOOP TILL <> 0FH

; FIND WHAT COL. IT'S IN
MVI L,0FFH ;SET SO INR WILL MAKE 0

KEYPD1: INR L
RRC
JC KEYPD1 ;LOOP TILL NO CY
; NOW ADD COL. TO ROW ADDER
MOV A,D ;GET ROW ADDER
ADD L
MOV L,A ;L IS THE KEY PRESSED (0 TO F HEX)
; SHIFT B LEFT 1 NIBBLE AND PUT L IN LOWER NIBBLE
MOV A,B ;SHIFT B
ADD A
ADD A
ADD A
ADD A ;THIS SHIFTS LEFT PADDING 0's
ADD L ;PUT L IN LOWER NIBBLE
MOV B,A ;NEW B REG

MVI H,DBOUNCE ;DEBOUNCE VAL. (NO KEYS ACCEPTED TILL 0)
POP D
RET

Using the Program

The previous program will be modified slightly (assuming it is still in
memory) by putting CALL KEYSCN in the program in place of IN IPORT, MOV B,A
and a new subroutine will be added at the end. (Pay close attention to the
addresses when entering the following program, since there is a skip in
sequence of the addresses after the first three.) When you run the program
you should see the key you press on the right display and the digit that was
there before, moved to the left display. As you have just seen demonstrated
in this application, multiplexing allows you to greatly extend the
capabilities of an output port.

ADDRESSADDRESS DATADATA DESCRIPTIONDESCRIPTION FF7B 7F
FF01 CD CALL FF65 FF7C 16 MVI D,FC
FF02 65 FF7D FC
FF03 FF FF7E 7B MOV A,E
: : FF7F 07 RLC
: : FF80 D3 OUT 11
FF65 AF XRA A FF81 11
FF66 D3 OUT 11 FF82 5F MOV E,A

 FF83 7A MOV A,D
FF67 11
FF68 DB IN 12 ADDRESSADDRESS DATADATA DESCRIPTIONDESCRIPTION
FF69 12 FF84 C6 ADI 04
FF6A E6 ANI 0F FF85 04
FF6B 0F FF86 57 MOV D,A
FF6C FE CPI 0F FF87 DB IN 12
FF6D 0F FF88 12
FF6E C2 JNZ FF76 FF89 E6 ANI 0F
FF6F 76 FF8A 0F
FF70 FF FF8B FE CPI 0F
FF71 24 INR H FF8C 0F
FF72 25 DCR H FF8D CA JZ FF7E
FF73 C8 RZ FF8E 7E
FF74 25 DCR H FF8F FF
FF75 C9 RET FF90 2E MVI L,FF
FF76 24 INR H FF91 FF
FF77 25 DCR H FF92 2C INR L
FF78 C0 RNZ FF93 0F RRC
FF79 D5 PUSH D FF94 DA JC FF92
FF7A 1E MVI E,7F FF95 92

APPLICATION 6-8

FF96 FF
FF97 7A MOV A,D
FF98 85 ADD L
FF99 6F MOV L,A
FF9A 78 MOV A,B
FF9B 87 ADD A
FF9C 87 ADD A
FF9D 87 ADD A
FF9E 87 ADD A
FF9F 85 ADD L
FFA0 47 MOV B,A
FFA1 26 MVI H,14
FFA2 14
FFA3 D1 POP D
FFA4 C9 RET

APPLICATION 7-1

Application 7: Controlling an LCD Module

Purpose: To demonstrate writing characters and cursor positioning on an
LCD Module display.

Discussion:

There are many LCD Module display manufacturers and most use the same 14 pin
dual row header interface and the same controller chip, the HD44780. These
modules display characters only, not graphics (with the exception that you
can simulate graphics by dynamically defining your own characters). You may
find these displays in surplus catalogs, or parts catalogs such as DIGI-KEY.
Some example parts are:

DIGI-KEY Part. Description (Call 1-800-DIGI-KEY)
OP116-ND
OPTREX 16x1 standard
LCD dot matrix
module
VT216-ND
Varitronix Ltd 16x2
standard LCD dot
matrix module

The HD44780
controller has two
registers: one for
data and one for
commands. The data
register allows you
to write characters
to the display,
define your own
characters and read
display memory. The
command register
allows writing of
several commands
relating to display
control and
initialization and
also reading the
controller's status
and address counter. In the interest of simplicity we will write to the
controller registers in this application.

The controller can transfer data in 8 or 4 bit mode, so we will use it in 4
bit mode since we have only 8 output ports and we need at least 4 to
transfer data (DB4 to DB7) and 2 for the control lines (RS and E).

;
; LCD DRIVER CODE
;
OPORT EQU 11H ;OUTPUT PORT
IPORT EQU 12H ;INPUT PORT
KEYIN EQU 0BH ;SERVICE FOR READING KEYPAD
MOS EQU 1000H ;MOS CALL ADDRESS

;
; OPORT BITS ARE DEFINED AS FOLLOWS:
; 7 6 5 4 3 2 1 0
; DB7 DB6 DB5 DB4 E RS (not used)

APPLICATION 7-2

;

ORG 0FF01H
MVI A,11110011B ; RS, E, = 0.
OUT OPORT

; RESET CODE
CALL DELAY
CALL DELAY
MVI A,30H
CALL DLNOUT
CALL DLNOUT
CALL DLNOUT

; INIT CODE
MVI A,00100000B ;SET 4 BIT MODE
CALL DLNOUT

MVI A,00101000B ;SET 4 BIT, 2 LINE, 5 BY 7 DOTS
CALL OUTCMD
MVI A,00001000B ;DISPLAY OFF
CALL OUTCMD
MVI A,00000001B ;DISPLAY ON
CALL OUTCMD
MVI A,00001110B ;TURN ON DISPLAY, CURSOR, AND BLINK.
CALL OUTCMD
MVI A,00000110B ;ENTRY MODE SET. INC. W/CURSOR MOVEMENT
CALL OUTCMD

LXI H,TSTSTR
CALL SHWSTR

LOOP: NOP
NOP
NOP
NOP
NOP ;THESE ARE PLACE HOLDERS

MVI C,KEYIN
CALL MOS ;GET A KEY
MVI A,'0'
ADD L ;CONVERT 0 TO 9 IN L TO ASCII
CALL OUTDTA ;DISPLAY THE CHAR
JMP LOOP

TSTSTR: DB 'The Primer.',0

;
; Show the string pointed to by HL. When 0 is encountered the program exits
; returning HL pointing to the byte after the 0.
;
SHWSTR: MOV A,M ;READ STRING

INX H ;CHANGE POINTER
ORA A ;SEE IF A=0
RZ ;EXIT IF END OF STRING
CALL OUTDTA ;DISPLAY CHARACTER
JMP SHWSTR

;
; Send A to the LCD with RS=1, high nibble first and low second.
;
OUTDTA: MVI E,0100B ;SET RS
 JMP OBYT1
;
; Send A to the LCD with RS=0, high nibble first and low second.
;
OUTCMD: MVI E,0 ;RS=0
OBYT1: MOV B,A ;SAVE IN B

ANI 0F0H ;MASK OFF LOW NIBBLE

APPLICATION 7-3

ORA E ;MAYBE MODIFY RS
CALL DLNOUT ;SEND IT
MOV A,B
ADD A
ADD A
ADD A
ADD A ;LOWER IS MOVED TO UPPER, PADDING 0'S
ORA E ;MAYBE MODIFY RS
CALL DLNOUT
RET

;
; This delays and falls through to OUTNIB
;
DLNOUT: CALL DELAY

;
; Send data in A to the LCD. Assumes bits 0 to 3 have been properly set.
;
OUTNIB: PUSH PSW

ANI 11110111B ;CLEAR E
OUT OPORT ;SEND NIBBLE
ORI 1000B ;SET E BIT
OUT OPORT
ANI 11110111B ;CLEAR E BIT
OUT OPORT
POP PSW
RET

;
; 5ms time delay for 8085 is 24 t states
;
DELAY: PUSH PSW ;approx 5ms for 3.072 MHZ clock
 PUSH H
 LXI H,641
DLAY2: DCX H ;6 T STATES
 MOV A,H ;4 T STATES
 ORA L ;4 T STATES
 JNZ DLAY2 ;10 T STATES
 POP H
 POP PSW
 RET

Program Description:

According to the schematic, the output port controls the LCD and the port
bits are connected as follows:

output port bits: 7 6 5 4 3 2 1 0
LCD header pins: DB7 DB6 DB5 DB4 E RS (not used)

The routine OUTNIB assumes the upper nibble of A has the value you want to
output and bit 2 (RS) is set to 0 for a command or 1 for data. This value
is output first with bit 3 (E) low, then high, then low again. The E input
when brought high momentarily causes the data input to RS and DB4 through
DB7 to be accepted by the LCD controller. DLNOUT works the same except a 5mS
delay (provided by DELAY) occurs before executing OUTNIB.

DELAY is called because the method we used to interface to the LCD Module
prevents us from reading the LCD module. This in turn prevents us from
reading the busy flag which tells us the LCD controller is busy executing a
command and cannot receive another yet. DELAY gets us around this problem
because it takes longer to execute than any of the LCD controller's
instructions insuring that the LCD will not be busy by the time it is
finished. In the initialization section some longer delays are needed, so
DELAY is called repeatedly.

Application 7-4

OUTCMD and OUTDTA use the same core routine but they select RS of 0 and 1
respectively. This core routine takes the byte in A and breaks it into two
nibbles and sends them to DLNOUT (high nibble first).

The main routine does the hardware reset for the HD44780, followed by the
display mode setup. Then SHWSTR sends the ASCII string pointed to by HL to
the display via OUTDTA, and then the MOS subroutine KEYIN is called to get a
key from the keypad and the key is translated to ASCII and sent to the
display (via OUTDTA) and then it loops back to get another key.

Connect Primer connector CN3 to the LCD according to the schematic and then
enter the following program. When you run the program "The Primer._" should
be shown on the display and when you press one of keys "0" to "9" they will
be shown on the display, with each new character displayed to the right of
the previous.

Eventually if you press the keys enough times you will eventually run out of
display area. The characters are now being stored in an area that is not
being displayed. If you have a 2 line display and you send enough
characters, they will start showing up on the second line and after more are
sent they will eventually show up on the first line.

ADDRESSADDRESS DATADATA DESCRIPTIONDESCRIPTION FF2C CD CALL FF68
FF01 3E MVI A,F3 FF2D 68
FF02 F3 FF2E FF
FF03 D3 OUT 11 FF2F 3E MVI A,06
FF04 11 FF30 06
FF05 CD CALL FF8D FF31 CD CALL FF68
FF06 8D FF32 68
FF07 FF FF33 FF
FF08 CD CALL FF8D FF34 21 LXI H,FF4D
FF09 8D FF35 4D
FF0A FF FF36 FF
FF0B 3E MVI A,30 FF37 CD CALL FF59
FF0C 30 FF38 59
FF0D CD CALL FF7B FF39 FF
FF0E 7B FF3A 00 NOP
FF0F FF FF3B 00 NOP
FF10 CD CALL FF7B FF3C 00 NOP
FF11 7B FF3D 00 NOP
FF12 FF FF3E 00 NOP
FF13 CD CALL FF7B FF3F 0E MVI C,0B
FF14 7B FF40 0B
FF15 FF
FF16 3E MVI A,20 ADDRESSADDRESS DATADATA DESCRIPTIONDESCRIPTION
FF17 20 FF41 CD CALL 1000
FF18 CD CALL FF7B FF42 00
FF19 7B FF43 10
FF1A FF FF44 3E MVI A,30
FF1B 3E MVI A,28 FF45 30
FF1C 28 FF46 85 ADD L
FF1D CD CALL FF68 FF47 CD CALL FF63
FF1E 68 FF48 63
FF1F FF FF49 FF
FF20 3E MVI A,08 FF4A C3 JMP FF3A
FF21 08 FF4B 3A
FF22 CD CALL FF68 FF4C FF
FF23 68 FF4D 54 "T"
FF24 FF FF4E 68 "h"
FF25 3E MVI A,01 FF4F 65 "e"
FF26 01 FF50 20 " "
FF27 CD CALL FF68 FF51 50 "P"
FF28 68 FF52 72 "r"
FF29 FF FF53 69 "i"
FF2A 3E MVI A,0E FF54 6D "m"
FF2B 0E FF55 65 "e"

Application 7-5

FF56 72 "r" FF9A C9 RET
FF57 2E "."
FF58 00 (end marker)
FF59 7E MOV A,M
FF5A 23 INX H
FF5B B7 ORA A
FF5C C8 RZ
FF5D CD CALL FF63
FF5E 63
FF5F FF
FF60 C3 JMP FF59
FF61 59
FF62 FF
FF63 1E MVI E,04
FF64 04
FF65 C3 JMP FF6A
FF66 6A
FF67 FF
FF68 1E MVI E,00
FF69 00
FF6A 47 MOV B,A
FF6B E6 ANI F0
FF6C F0
FF6D B3 ORA E
FF6E CD CALL FF7B
FF6F 7B
FF70 FF
FF71 78 MOV A,B
FF72 87 ADD A
FF73 87 ADD A
FF74 87 ADD A
FF75 87 ADD A
FF76 B3 ORA E
FF77 CD CALL FF7B
FF78 7B
FF79 FF
FF7A C9 RET
FF7B CD CALL FF8D
FF7C 8D
FF7D FF
FF7E F5 PUSH PSW
FF7F E6 ANI F7
FF80 F7
ADDRESSADDRESS DATADATA DESCRIPTIONDESCRIPTION
FF81 D3 OUT 11
FF82 11
FF83 F6 ORI 08
FF84 08
FF85 D3 OUT 11
FF86 11
FF87 E6 ANI F7
FF88 F7
FF89 D3 OUT 11
FF8A 11
FF8B F1 POP PSW
FF8C C9 RET
FF8D F5 PUSH PSW
FF8E E5 PUSH H
FF8F 21 LXI H,0281
FF90 81
FF91 02
FF92 2B DCX H
FF93 7C MOV A,H
FF94 B5 ORA L
FF95 C2 JNZ FF92
FF96 92
FF97 FF
FF98 E1 POP H
FF99 F1 POP PSW

Application 7-6

In the next example we will modify the program to use the Set DD RAM Address
command which will in effect allow us to control the cursor position.
Modify the following addresses and run the program. You will see that each
key typed will show up on the screen in the same place even though it is
still automatically incrementing the cursor position. This is because the
address is set for that cursor position after the cursor has been
incremented.

You may want to experiment with different cursor positions. If you have a 2
line display, you can move the cursor to line 2 by sending 10000000b + 40h
(C0h) to OUTCMD, where 10000000b is the command for Set DD RAM Address and
40h is the offset for line 2.

ADDRESSADDRESS DATADATA DESCRIPTIONDESCRIPTION
FF3A 3E MVI A,8B
FF3B 8B
FF3C CD CALL FF68
FF3D 68
FF3E FF

Application 8-1

Application 8: Capacitance Meter

Purpose: This application shows how to use the PRIMER as a capacitance
meter.

Discussion:

This application is an example of how the PRIMER can be used as a useful
piece of electronic test equipment. The Capacitance Meter application can
be used to accurately measure capacitors ranging from .01 to 220 uF.

The parts required are minimal. Items needed are:

1) 10K ohm mutiturn potentiometer
2) 10K ohm 1/4 watt resistor
3) one capacitor of a known value in the range of 1 to 100 uF
(calibration cap)
4) several capacitors, for testing, in the range of .01uF to 300 uF
5) breadboard

The
circuit
is very
simple.
Follow
the
schematic
below to
assemble
the
circuit.

Application 8-2

CIRCUIT DESCRIPTION

The PRIMER uses the on-board D/A converter, the comparator, OUTPUT1, and
the timer within the 8155 to measure capacitance. The capacitor is
connected in series with R1. The open end of the capacitor is then tied to
OUTPUT1 and the open end of R1 is tied to ground. The D/A output of the
PRIMER is tied to the non-inverting side if the op-amp comparator while the
capacitor-R1 connection is tied to the inverting side. When the program
first starts, the D/A is set slightly above ground potential and OUTPUT1 is
set LOW. The capacitor now discharges through R1. The program waits for
the comparator to go HIGH which indicates the capacitor voltage has fallen
below the D/A voltage which guarantees a fully discharged cap. The program
then starts the timer and sets OUTPUT1 HI which starts the capacitor
charging. The timer is driven by a 307.2 Khz input Clock. The timer works
by loading a “count” value into a register within the timer. The timer then
decrements this value every time the input clock completes a cycle. When
the value reaches 0, the timer generates an output pulse then reloads the
register with the “count” value and the process starts all over again. By
increasing the value in the “count” register the pulse rate can be slowed
down and vise-versa. The Capacitor Meter program uses the timer as the
time-base by counting how many pulses are generated by the timer while the
capacitor is charging. The larger the cap, the longer the charge time,
therefore the more pulses will be generated. The voltage across the
resistor is near VCC when OUTPUT1 first goes HIGH, then ramps down as the
capacitor charges. When the voltage falls below the D/A voltage the
comparator output goes HIGH, stopping the timer. The current pulse count
is then converted to decimal and displayed on the LED display.

CALIBRATIONCALIBRATION

The Capacitor Meter program works by measuring the time required to charge
the capacitor through a resistor. The time-base is generated by the timer
within the 8155. The Capacitor Meter program has 2 user selectable timer
scales to choose from. The LO scale can measure capacitor values up to
9.999 uF while the HI scale can measure values up to 999.9 uF. Two scales
were chosen to provide good resolution to small caps but also have the
ability to measure large caps. The scale is determined by the “count” value
loaded into the 8155 timer. A value of 10 is loaded in the “count” register
for low scale and a value of 1000 for the high scale. Once the capacitor is
charged the pulse count is displayed on the LED display in decimal. A
decimal point is then placed on the LED display in the “10's” place for high
scale and in the “1000's” place for low scale. So the actual value written
to the display for a 1uF capacitor measured in low scale would be “1000".
Once the decimal point is added it looks like “1.000". Because the
Capacitor Meter uses a fixed time base to calculate capacitance, the
resistor value must be determined to calibrate the Capacitor Meter.

The equation for capacitor charge time of an RC circuit is:

T = 5*R*C
Where:

T = Time in Seconds

Application 8-3

R = Resistance in Ohms
C = Capacitance in Farads

Solving for R gives:

R = T/5C

The equation above is used to determine the approximate resistance value for
the Capacitor Meter program.

Thus we can calculate the actual resistance value:

 (1 / 307.2 Khz) * 10000 / 5 * 1uF = 6400 Ohms

This is the value for the total resistance. Keep in mind that the PRIMER
has an in-circuit resistor with a value of 100 K ohms in parallel with the
calibration resistor. The actual resistance value will be slightly above
the theoretical value because the program does not charge the capacitor
100%. Other factors such as ESR (Equivalent Series Resistance) cause errors
to grow quit large as capacitor values increase into the hundreds of uF’s
range. The value calculated is a good starting point but some final
tweaking will be required.

USING THE PROGRAM

Following is the assembly language listing of the Capacitor Meter program:

; CAPACITOR METER

P_IN EQU 12H ;ADDRESS OF PORT A

P_OUT EQU 11H ;ADDRESS OF PORT B

P_8155 EQU 10H ;ADDRESS OF 8155 CONTROL REGISTER

P_CNTLO EQU 14H ;ADDRESS OF LO BYTE OF COUNTER

P_CNTHI EQU 15H ;ADDRESS OF HI BYTE OF COUNTER

TMRSTRT EQU 0CDH ;START TIMER COMMAND

TMRSTOP EQU 8DH ;STOP TIMER COMMAND

ADCVAL EQU 01H ;VALUE OF 1 TO D/A

TMRMODE EQU 0C0H ;SINGLE PULSE AND RELOAD

DSPORT EQU 40H ;ADDRESS OF LED DISPLAY DATA

DSPCMD EQU 41H ;ADDRESS OF LED DISPLAY COMMAND REGISTER

MOS EQU 1000H ;MOS SERVICE

ORG 0FF01H ;ORIGIN OF MEM IN 8155

START:

MVI E,ADCVAL ;SET D/A TO LOW V

MVI C,0EH ;SERVICE 0E (DACOUT)

CALL MOS ; MOS SERVICE

MVI A,TMRSTOP ;STOP TIMER

OUT P_8155

LXI D,0000H ;CLR D,E (PUT 0'S IN LED DISPLAY)

MVI C,13H ;CALL LEDDEC ROUTINE IN MOS

Application 8-4

CALL MOS ;

MVI A,80H ;"WRITE COMMAND" FOR DIGIT 0

OUT DSPCMD

MVI A,00010111B ;WRITE "F" TO DIGIT 0

OUT DSPORT

MVI A,81H ;"WRITE COMMAND" FOR DIGIT 1

OUT DSPCMD

MVI A,11000001B ;WRITE "u" TO DIGIT 1

OUT DSPORT

WAIT:

IN 12H ;GET SW0 SETTING

ANI 01 ;MASK OFF OTHER SWCHS

MVI C,5 ;DECIMAL DIG 5

MOV B,A

CALL DECPNT ;PLACES THE DECIMAL POINT

XRI 00000001B ;COMPLIMENT SW SETTING

MOV B,A

MVI C,3

CALL DECPNT

MOV B,A ;SAVE SWITCH VAL

MVI C,16H ;CALL SWITCH STAT

CALL MOS

MOV A,H

RAR ;IF KEY WAS PRESSED,

JNC WAIT ; THEN GO !

MOV A,B ;IF DIPSWITCH1 IS ON

RAR

JNC HI ;THEN GOTO HI

LO: MVI A,0E8H ;LOAD TIMER W/ 1000 D

OUT P_CNTLO

MVI A,0C3H

OUT P_CNTHI

JMP GO

HI: MVI A,0AH ;LOAD TIMER W/ 10 D

OUT P_CNTLO

MVI A,0C0H

OUT P_CNTHI

GO: XRA A ;CLEAR ACC

OUT 11H ;SET PORT A LO

POLE1: RIM ;POLE TO MAKE SURE CAP IS DISCHARGED

RAL ;CHECK IF SID HAS GONE HIGH

JNC POLE1 ;IF NOT POLE

MVI A,0FFH ;SET OUTPUT1 HIGH

OUT 11H

Application 8-5

MVI A,TMRSTRT ;START TIMER

OUT P_8155

LUP: MVI A,1FH ;CLEAR 7.5 INT

SIM ;SET INTERUPT MASK

POLE2:

RIM ;LOAD ACC WITH INT FLG STATUS

RAL ;CHECK IF SID HAS GONE HIGH

JC EXIT ;IF SO THEN EXIT

RAL ;CHECH IF 7.5 INT WENT SET

JNC POLE2 ;IF NOT THEN POLE

INX D ;INCREMENT D AND E

JMP LUP ;GOTO LUP

EXIT: MVI C,13H ;CALL LEDDEC ROUTINE IN MOS

CALL MOS

MOV A,B

MVI C,3

CALL DECPNT ;PLACES THE DECIMAL POINT

XRI 00000001B ;COMPLIMENT SW SETTING

MOV B,A

MVI C,5

CALL DECPNT

STP: MVI C,16H ;CALL KEYPAD STAT

CALL MOS

MOV A,H

RAR ;IF A BUTTON WAS NOT PRESSED,

JNC STP ;THEN POLE

JMP START ;ELSE TEST ANOTHER CAP

;***

; DECPNT: IN: LOAD C W/ DIGIT #, LOAD B WITH A 1 OR 0

; B=1 DEC PNT ON, B=0 DEC PNT OFF

; OUT: NOTHING

;--

DECPNT:

PUSH PSW

MOV A,B

RAL ;MOVE BIT 0 TO BIT 3 LOCATION

RAL

RAL

ANI 00001000B

MOV B,A

MVI A,60H

ADD C ;COMMAND TO READ DIGIT

OUT DSPCMD

IN DSPORT ;GET SEGMENT VALUES

STA TEMP ;SAVE A REG

MVI A,80H ;COMMAND TO WRITE DIGIT

ADD C

OUT DSPCMD

Application 8-6

LDA TEMP ;RECALL A VALUE

ANI 11110111B ;TURN OFF DECIMAL POINT

ORA B ;TURN ON IF SUPOSED TO IS ON

OUT DSPORT ;WRITE A TO DIGIT

POP PSW

RET

TEMP DS 1

END

Load the following program into memory:

ADDRESS DATA INSTRUCTION ADDRESS DATA INSTRUCTION

FF01 1E MVI E,01 FF14 3E MVI A,80

FF02 01 FF15 80

FF03 0E MVI C,0E FF16 D3 OUT 41

FF04 0E FF17 41

FF05 CD CALL 1000 FF18 3E MVI A,17

FF06 00 FF19 17

FF07 10 FF1A D3 OUT 40

FF08 3E MVI A,8D FF1B 40

FF09 8D FF1C 3E MVI A,81

FF0A D3 OUT 10 FF1D 81

FF0B 10 FF1E D3 OUT 41

FF0C 11 LXI D,0000 FF1F 41

FF0D 00 FF20 3E MVI A,C1

FF0E 00 FF21 C1

FF0F 0E MVI C,13 FF22 D3 OUT 40

FF10 13 FF23 40

FF11 CD CALL 1000 FF24 DB IN 12

FF12 00 FF25 12

FF13 10

ADDRESS DATA INSTRUCTION

FF26 E6 ANI 01

FF27 01

FF28 0E MVI C,05

FF29 05

FF2A 47 MOV B,A

FF2B CD CALL FF99

FF2C 99

FF2D FF

FF2E EE XRI 01

FF2F 01

FF30 47 MOV B,A

FF31 0E MVI C,03

FF32 03

FF33 CD CALL FF99

FF34 99

FF35 FF

FF36 47 MOV B,A

FF37 0E MVI C,16

FF38 16

FF39 CD CALL 1000

FF3A 00

APPLICATION 8-7

FF3B 10 FF74 FF

FF3C 7C MOV A,H FF75 13 INX D

FF3D 1F RAR FF76 C3 JMP FF69

FF3E D2 JNC FF24 FF77 69

FF3F 24 FF78 FF

FF40 FF FF79 0E MVI C,13

FF41 78 MOV A,B FF7A 13

FF42 1F RAR FF7B CD CALL 1000

FF43 D2 JNC FF51 FF7C 00

FF44 51 FF7D 10

FF45 FF FF7E 78 MOV A,B

FF46 3E MVI A,E8 FF7F 0E MVI C,03

FF47 E8 FF80 03

FF48 D3 OUT 14 FF81 CD CALL FF99

FF49 14 FF82 99

FF4A 3E MVI A,C3 FF83 FF

FF4B C3 FF84 EE XRI 01

FF4C D3 OUT 15 FF85 01

FF4D 15 FF86 47 MOV B,A

FF4E C3 JMP FF59 FF87 0E MVI C,05

FF4F 59 FF88 05

FF50 FF FF89 CD CALL FF99

FF51 3E MVI A,0A FF8A 99

FF52 0A FF8B FF

FF53 D3 OUT 14 FF8C 0E MVI C,16

FF54 14 FF8D 16

FF55 3E MVI A,C0 FF8E CD CALL 1000

FF56 C0 FF8F 00

FF57 D3 OUT 15 FF90 10

FF58 15 FF91 7C MOV A,H

FF59 AF XRA A FF92 1F RAR

FF5A D3 OUT 11 FF93 D2 JNC FF8C

FF5B 11 FF94 8C

FF5C 20 RIM FF95 FF

FF5D 17 RAL FF96 C3 JMP FF01

FF5E D2 JNC FF5C FF97 01

FF5F 5C FF98 FF

FF60 FF FF99 F5 PUSH PSW

FF61 3E MVI A,FF FF9A 78 MOV A,B

FF62 FF FF9B 17 RAL

ADDRESS DATA INSTRUCTION

FF63 D3 OUT 11

FF64 11

FF65 3E MVI A,CD

FF66 CD

FF67 D3 OUT 10 FFA0 47 MOV B,A

FF68 10 FFA1 3E MVI A,60

FF69 3E MVI A,1F FFA2 60

FF6A 1F FFA3 81 ADD C

FF6B 30 SIM FFA4 D3 OUT 41

FF6C 20 RIM FFA5 41

FF6D 17 RAL FFA6 DB IN 40

FF6E DA JC FF79 FFA7 40

FF6F 79 FFA8 32 STA FFBA

FF70 FF FFA9 BA

FF71 17 RAL FFAA FF

FF72 D2 JNC FF6C FFAB 3E MVI A,80

FF73 6C FFAC 80

FF9C 17 RAL

FF9D 17 RAL

FF9E E6 ANI 08

FF9F 08

ADDRESS DATA INSTRUCTION

APPLICATION 8-8

FFAD 81 ADD C

FFAE D3 OUT 41

FFAF 41

FFB0 3A LDA FFBA

FFB1 BA

FFB2 FF

FFB3 E6 ANI F7

FFB4 F7

FFB5 B0 ORA B

FFB6 D3 OUT 40

FFB7 40

FFB8 F1 POP PSW

FFB9 C9 RET

After loading the program, set the pot for midscale and install the calibration cap. Press FUNC. then RUN (to enter run mode). The
display should read "0000 uF" with a decimal point in the "10's" place or in the "1000's" place. Change DIPSWITCH 0 to change the
decimal point position. With the decimal point in the “10's” place, the Capacitor Meter program can measure capacitor values up to
999.9 uF. With the decimal point in the “1000's” place, values up to 9.999 uF can be measured. Once the scale is chosen, press any
key on the keypad to test the cap. A value will be returned to the display which represents capacitance. Press another key to start the
program over again. Adjust the pot and continue to test the calibration capacitor until an accurate reading is realized. Test several caps
and record the results. Accuracies greater than 99% are possible.

NOTE- The most accurate results will be obtained when the PRIMER is powered up and the temperature allowed to stabilize over a
period of 15 to 30 minutes.

Application 9-1

Application 9: Interfacing a Stepper Motor to the PRIMER

Purpose: To show how a computer can be used to perform motion control
using a stepper motor.

Goals:
 1. Build a stepper motor driver circuit.
 2. Load a program that will demonstrate stepper motor control.

Materials:Materials:

1) PRIMER trainer
1) breadboard
1) SM4200 4 Phase stepper motor (Jameco part #105890. Call 1-800-831-4242)
1) 7404 Hex Inverter
4) 2N3904 NPN Transistors
4) 1N4001 Diodes
4) 1K Ohm, 1/4 Watt Resistor
1) 220 Ohm, 1/4 Watt Resistor

Discussion:Discussion:

This lab shows how the PRIMER can be used to drive a stepper motor. The
diagram below shows the electrical equivalent of a 4 phase stepper motor
connected to the output port of the PRIMER. When the program first starts,
OUTPUT2 and OUTPUT3 are energized. The stepper is now held in position
because of the magnetic force pulling the rotor between the energized poles.
A step can be made by turning on OUTPUT4 while turning off OUTPUT2. This
moves the rotor one increment. To move one more increment, OUTPUT1 is
turned on while OUTPUT3 is turned off. To go back to the original position,
the sequence
would be as
follows: Turn on
OUTPUT3 while
turning off
OUTPUT1, turn on
OUTPUT2 while
turning off
OUTPUT4.

Application 9-2

Circuit Description and ConstructionCircuit Description and Construction:

The stepper motor cannot connect directly to the output port of the PRIMER
because it uses 5 volt logic levels while the stepper motor operates on 12
volts. The current demand of the stepper motor is also a problem, since
computer logic supplies very low current compared to the stepper motor’s
needs. The solution to these problems is an interface circuit. The circuit
shown in the schematic provides the necessary interface from 5 volt logic to
a 12 volt source required by the stepper. Transistors Q1-Q4 provide the
current and voltage amplification while diodes D1-D4 and resistor R5 provide
a feedback path for the back EMF generated when the poles are de-energized.
The inverters are used to convert the negative logic on the PRIMER to
positive logic and to prevent the stepper from being energized when the

PRIMER is reset. The interface is connected to the low nibble (4 bits) of
the PRIMER output port. The driver circuit should be built on a breadboard
following the schematic. Once built, a small piece of solid wire should be
tightly wrapped around the shaft of the stepper motor to serve as a pointing
device.

NoteNote - The stepper motor and driver circuit are powered from a power supply
separate from the PRIMER itself. This is necessary because of the large
current draw and noise produce by the stepper motor.

Application 9-3

Using the Program:Using the Program:

Load the following program into memory:

ADDRESS DATA INSTRUCTION

FF01 1E MVI E,37
FF02 37
FF03 16 MVI D,01
FF04 01
FF05 0E MVI C,11
FF06 11
FF07 CD CALL 1000
FF08 00
FF09 10
FF0A 1E MVI E,FB
FF0B FB
FF0C 15 DCR D
FF0D CD CALL 1000
FF0E 00
FF0F 10
FF10 3E MVI A,33
FF11 33
FF12 32 STA FFAC
FF13 AC
FF14 FF
FF15 AF XRA A
FF16 32 STA FFAD
FF17 AD
FF18 FF
FF19 6F MOV L,A
FF1A 47 MOV B,A
FF1B C3 JMP FF43
FF1C 43
FF1D FF
FF1E 78 MOV A,B
FF1F 32 STA FFAD
FF20 AD
FF21 FF
FF22 CD CALL FF4B
FF23 4B
FF24 FF
FF25 3A LDA FFAD
FF26 AD
FF27 FF
FF28 47 MOV B,A
FF29 16 MVI D,00
FF2A 00
FF2B 58 MOV E,B
FF2C 0E MVI C,13
FF2D 13
FF2E CD CALL 1000
FF2F 00
FF30 10
FF31 7D MOV A,L
FF32 90 SUB B
FF33 CA JZ FF1E
FF34 1E

FF35 FF

ADDRESS DATA INSTRUCTION

FF36 DA JC FF3F
FF37 3F
FF38 FF
FF39 04 INR B
FF3A AF XRA A
FF3B 5F MOV E,A
FF3C C3 JMP FF43
FF3D 43
FF3E FF
FF3F 05 DCR B
FF40 AF XRA A
FF41 3C INR A
FF42 5F MOV E,A
FF43 16 MVI D,64
FF44 64
FF45 CD CALL FF72
FF46 72
FF47 FF
FF48 C3 JMP FF29
FF49 26
FF4A FF
FF4B 06 MVI B,02
FF4C 02
FF4D 0E MVI C,0B
FF4E 0B
FF4F CD CALL 1000
FF50 00
FF51 10
FF52 7D MOV A,L
FF53 FE CPI 0A
FF54 0A
FF55 D2 JNC FF4D
FF56 4D
FF57 FF
FF58 05 DCR B
FF59 CA JZ FF62
FF5A 62
FF5B FF
FF5C 32 STA FFAA
FF5D AA
FF5E FF
FF5F C3 JMP FF4D
FF60 4D
FF61 FF
FF62 32 STA FFAB
FF63 AB
FF64 FF
FF65 3A LDA FFAA

Application 9-4

FF66 AA
FF67 FF
FF68 47 MOV B,A
FF69 CD CALL FFA1
FF6A A1
FF6B FF

ADDRESS DATA INSTRUCTION

FF6C 3A LDA FFAB FF94 05 DCR B
FF6D AB FF95 C2 JNZ FF94
FF6E FF FF96 94
FF6F 80 ADD B FF97 FF
FF70 6F MOV L,A FF98 00 NOP
FF71 C9 RET FF99 15 DCR D
FF72 F5 PUSH PSW FF9A C2 JNZ FF92
FF73 C5 PUSH B FF9B 92
FF74 7B MOV A,E FF9C FF
FF75 1F RAR FF9D D1 POP D
FF76 3A LDA FFAC FF9E C1 POP B
FF77 AC FF9F F1 POP PSW
FF78 FF FFA0 C9 RET
FF79 DA JC FF80 FFA1 F5 PUSH PSW
FF7A 80 FFA2 78 MOV A,B
FF7B FF FFA3 07 RLC
FF7C 0F RRC FFA4 07 RLC
FF7D C3 JMP FF81 FFA5 80 ADD B
FF7E 81 FFA6 07 RLC
FF7F FF FFA7 47 MOV B,A
FF80 07 RLC FFA8 F1 POP PSW
FF81 32 STA FFAC FFA9 C9 RET
FF82 AC
FF83 FF
FF84 DB IN 11
FF85 11
FF86 E6 ANI F0
FF87 F0
FF88 47 MOV B,A
FF89 3A LDA FFAC
FF8A AC
FF8B FF

ADDRESS DATA INSTRUCTION

FF8C E6 ANI 0F
FF8D 0F
FF8E B0 ORA B
FF8F D3 OUT 11
FF90 11
FF91 D5 PUSH D
FF92 06 MVI B,FF
FF93 FF

Once the program is started the LED display should read "0000 P0.". The
"P0." Stands for "position" and "0000" indicates the relative position of
the stepper referenced from its original position when the program was
started (thus 0000 means it is in the same position as it was on start up).
Press a two digit decimal number on the keypad and the stepper motor should
move to that position with the display incrementing as the stepper moves.
Once the stepper stops, enter 00 and the stepper should rotate the opposite
direction with the display decrementing and finally stopping at 00. The
stepper motor should now be in the exact position it was in when the program
was first started.

Program DescriptionProgram Description:

The subroutines are described as follows:

Application 9-5

DBLDECIN - Waits for two decimal keys to be pressed then returns the decimal
equivalent in the L register. The routine contains error trapping that will
not allow a key greater than 9 or a control key to be accepted.

MULTX10 - Used by DBLDECIN to multiply the first key press by a factor of
ten. This routine may come in handy in other programs.

STEPR - Moves the stepper motor one step forward or backward. The speed can
be controlled by changing the label SPEED, and the direction is controlled
by the value in the E register.

; STEPPER MOTOR PROG

P_IN EQU 12H ;ADRES OF PORT A
P_OUT EQU 11H ;ADRES OF PORT B
MOS EQU 1000H ;MOS SERVICE
KEYIN EQU 0BH ;VECTOR FOR KEYIN SERVICE
LEDDEC EQU 13H ;VECTOR FOR LEDDEC SERVICE
SPEED EQU 20 ;STEPR MOTOR SPEED
LEDOUT EQU 11H

ORG 0FF01H ;ORIGIN OF MEM IN 8155

START:
MVI E,00110111B ;THE VALUE FOR "P"
MVI D,1
MVI C,LEDOUT
CALL MOS

MVI E,11111011B ;THE VALUE FOR "O."
DCR D
CALL MOS

MVI A,00110011B ;INITIALIZE STEPPER MOTOR ;
STA STEP ;STORE IN STEP
XRA A ;CLR A REG
STA FINLPOS ;CLR FINLPOS VARIABLE
MOV L,A ;CLR L REG
MOV B,A ;CLR B REG
JMP SKPCW ;JUMP TO OUTPUT START POS TO STEPPER

MAIN:
MOV A,B ;NEW POSITION BECOMES OLD POSITION
STA FINLPOS

CALL DBLDECIN ;GET KEY BOARD VALUE

LDA FINLPOS
MOV B,A

STEPLUP:
MVI D,0 ;CLR D REG
MOV E,B ;PLACE CURRENT POSITION ON LED DISPLAY
MVI C,LEDDEC

Application 9-6

CALL MOS

MOV A,L ;WHERE SUPPOSED TO BE
SUB B ;- WHERE AT
JZ MAIN ;IF 0 EXIT LUP AND START OVER
JC CW ;IF NEG GOTO CW ELSE CCW

CCW:
INR B ;INC CURENT POSITION
XRA A ;CLR A REG

MOV E,A ;E = 0
JMP SKPCW

CW:
DCR B ;DEC CURRENT POS
XRA A ;CLR A REG
INR A ;A = 1
MOV E,A ;E = 1

SKPCW:
MVI D,SPEED ;SET SPEED OF STEPR
CALL STEPR
JMP STEPLUP ;REPEAT

;**
;DOUBLE DECIMAL IN
;INPUT: NOTHING.
;OUTPUT: L = BINARY VALUE OF A TWO DECIMAL DIGIT INPUT FROM KEYPAD
;
;--
DBLDECIN:

MVI B,2 ;USED AS COUNTER TO CALL KEYIN TWICE
GETPOS:

MVI C,KEYIN
CALL MOS ;CALL KEYIN
MOV A,L ;A = KEY VALUE
CPI 10 ;IF VALUE IS > 10 ENTER AGAIN
JNC GETPOS
DCR B ;DEC LOOP COUNTER
JZ LOLBLE ;IF ZERO THEN EXIT
STA HIDIG ;IF NOT THEN STORE FIRST KEYPRESS AS
JMP GETPOS ;HIGH DIGIT

LOLBLE:
STA LODIG ;STORE SECOND DIGIT AS LOW DIGIT
LDA HIDIG ;LOAD HIGH DIG
MOV B,A ;MOV TO B
CALL MULTX10 ;MULTIPLY IT BY TEN
LDA LODIG ;LOAD LOW DIG
ADD B ;ADD IT TO HI DIGIT
MOV L,A ;STORE FINAL DEC VAL IN L
RET

;**
; STEPR
; IN: D = SPEED. E = DIRECTION,1 = CW 0 = CCW
; OUT: NOTHING
;--
STEPR:

PUSH PSW ;SAVE A STATUS
PUSH B ;SAVE B STATUS
MOV A,E ;

Application 9-7

RAR
LDA STEP ;LOAD STEP
JC LEFT ;IF E = 1 THEN GOTO LEFT
RRC ;ELSE ROTATE STEP RIGHT
JMP SKIP ;SKIP NEXT INSTRUCTION

LEFT:
RLC ;ROTATE STEP LEFT

SKIP:
STA STEP ;STORE BACK AS STEP

IN P_OUT ;MASK OFF 4 LSB OF OUTPUT PORT
ANI 0F0H
MOV B,A
LDA STEP ;LOAD STEP
ANI 0FH ;MASK OFF 4 MSB OF STEP
ORA B ;OR WITH 4 LSB OF OUTPUT PORT
OUT P_OUT ;OUT STEP AS 4 LSB'S AND CURRENT STATUS OF 4

 ;MSB'S OF OUTPUT PORT REMAIN UNCHANGED.
PUSH D

DELAY:
MVI B,0FFH ;DELAY TO CONTROL SPEED OF STEPPER

DEL:
DCR B
JNZ DEL
NOP
DCR D
JNZ DELAY
POP D
POP B
POP PSW
RET

;**
;INPUT: B = VALUE TO MULT BY 10, MUST BE LESS THAN 25 DECIMAL
;--
MULTX10:

PUSH PSW
MOV A,B
RLC
RLC
ADD B
RLC
MOV B,A
POP PSW
RET

HIDIG DS 1
LODIG DS 1
STEP DS 1
FINLPOS DS 1

END

Application 10-1

Application 10: Interfacing an 8255A PPI to the PRIMER
Purpose: To introduce the method of interfacing an I/O mapped device to the PRIMER by building a

simple circuit using the 8255A PPI.
Materials:

(1) PRIMER trainer
(1) 8255A PPI Chip
(1) Breadboard
(2) 50 pin ribbon cable female header connector
(1) 6 inch portion of 50 wire ribbon cable
(1) 7 inches of wire-wrap wire and a wire-wrapping tool
(40) 18 gauge jumper wires 4 to 6 inches long
(1) 1K ohm 5% 1/4 watt resistor
(24) LED's

Introduction to the 8255A PPI:

The 8255A PPI (programmable peripheral interface) is a general purpose programmable I/O device designed to
use with microprocessors. Its function is to interface peripheral equipment to the microcomputer system bus.
The data I/O bus of the 8255A are the lines marked D0-D7. Input and output instructions from the
microprocessor change the states of the RD*, WR* and CS* lines (read, write and chip select respectively)
which in turn control the 8255A data I/O bus and determine whether it will be used for input, output or whether it
will be disabled (in a high-impedance state).

The CS* pin is the Chip Select for the 8255A. A CS* pin can be thought of as a master select pin because
unless it is in its active state (low) the 8255A is inactive and its data I/O bus is in a high-impedance state and all
of its control pins are ignored (except RESET). A CS* pin is common among microprocessor peripherals and
memories because it allows many devices to use a common data bus by allowing the microprocessor and its
support circuitry to control which device will use the data bus.

If the 8255A's CS* pin is low, it is selected and the RD* and WR* pins determine whether data will be read from
or written to it, and the A0 and A1 pins (address bus pins) determine which of the 3 read registers and 4 write
registers will be used. This is shown in the chart below.

PORT SELECT CHARACTERISTICS
(READ FROM 8255A)
A1 A0 RD* WR* CS*
0 0 0 1 0 Port A
0 1 0 1 0 Port B
1 0 0 1 0 Port C
1 1 0 1 0 (illegal condition)

(WRITE TO 8255A)
0 0 1 0 0 Port A
0 1 1 0 0 Port B
1 0 1 0 0 Port C
1 1 1 0 0 Control register

(DISABLE 8255A)
X X X X 1 3-state
1 1 0 1 0 illegal
X X 1 1 0 3-state

There are three modes of operation that can be selected by the system software.

Application 10-2

Mode 0 - Basic input/output
Mode 1 - Strobed Input/output
Mode 2 - Bi-Directional Bus

For this experiment we used mode 0. In this mode, the 8255A has three 8 bit I/O ports (ports A, B and C) which
can be individually configured as inputs or outputs. Port C is unique in that it can be treated as two 4 bit ports
which are programmed individually as inputs or outputs. When a "high" is seen at the 8255A's RESET pin, this
clears all the internal registers, including the control register, and all ports are set to the input mode. In the circuit
described below, the RESET pin is connected to the PRIMER reset circuit so the 8255A can be reset when the
PRIMER reset button is pressed or when the PRIMER is powered up.

Circuit Description:

Refer to the schematic. The 8255A adapts easily to the 8085 architecture since it was originally designed to be
an 8080/8085 peripheral. The necessary control lines and busses are on the expansion connector CN1 and
have the same labels as the 8255A pins, except for EXTIOCS*. The EXTIOCS* is a I/O chip select output that is
decoded on-board which is connected to CS* of the 8255A. The I/O address range where EXTIOCS* is active is
from 0C0H to 0FFH. Since we are only using address lines A0 and A1 addresses 0C0H to 0C3H can be used to
select the 8255A registers and ports.

The pins of ports A, B and C will be connected to LED's which are in turn connected to a common current
limiting resistor. Note that it is allowable to use a common resistor if only one LED is active at a time. If a
program is written which turns on more than one at a time, the LED's will become dim and you could possibly
burn out the resistor if its power rating is too low.

1
K

EXP.CONN.

5 0
4 9
4 8
4 7
4 6
4 5
4 4
4 3
4 2
4 1
4 0
3 9
3 8
3 7
3 6
3 5
3 4
3 3
3 2
3 1
3 0
2 9
2 8
2 7
2 6
2 5
2 4
2 3
2 2
2 1
2 0
1 9
1 8
1 7
1 6
1 5
1 4
1 3
1 2
1 1
1 0
9
8
7
6
5
4
3
2
1

8 2 5 5 A

CS
6

RESET
3 5

RD
5

WR
3 6

A1
8

A0
9

D0
3 4

D1
3 3

D2
3 2

D3
3 1

D4
3 0

D5
2 9

D6
2 8

D7
2 7

PA0
4

PA1
3

PA2
2

PA3
1

PA4
4 0

PA5
3 9

PA6
3 8

PA7
3 7

PC0
1 4

PC1
1 5

PC2
1 6

PC3
1 7

PC4
1 3

PC5
1 2

PC6
1 1

PC7
1 0

PB0
1 8

PB1
1 9

PB2
2 0

PB3
2 1

PB4
2 2

PB5
2 3

PB6
2 4

PB7
2 5

LED

Application 10-3

The Vcc and ground pins are not shown on the schematic. Ground will come from pin 27 of CN1 and go to pin 7
of the 8255A (note that all references to pin numbers in this application are based on a 40 pin DIP package
pinout). The section of wire-wrap wire can be used to connect the Vcc (+5v) supply available on CN3 pin 21 or
22, to pin 26 of the 8255A. If it is desired to have more than one LED on at a time, you should power the circuit
with a separate 5v supply and install (24) 1k ohm resistors between ground and each LED. You will also need to
determine the maximum power dissipation of your particular 8255A to make sure the load applied doesn't
damage it.

All connections to the PRIMER will be made by connecting one end of a 50 pin ribbon cable to the expansion
connector and using jumper wires to connect the other end to the breadboard. To make the 50 pin ribbon cable,
we need to orient the ribbon and the 50 pin connectors so that when the cable is assembled and plugged into
the PRIMER, the female connector on the other end is pointing up. Most 50 pin female connectors have an
arrow or mark indicating pin 1. Orient the connector so it will connect to pin 1 of the header when the ribbon is
pointed away from the board. Similarly, some 50 wire ribbon cables have one edge wire that is marked in some
way. If your cable is like this, the convention is to orient the cable so the marked wire is on the same side as pin
1 of the header. On the other end of the cable, the female connector should point up, with the female header
mark for pin 1 on the same edge of the cable as the mark on the other female header. When the headers are
properly oriented on the ribbon cable, they should be pressed into the cable wire with a vise. (Only apply
enough pressure to close the protective back onto the header connector or it could be damaged). When the

Application 10-4

cable is made this way, pin 1 is easily found on the cable and it can be used as a reference to find the other pins
needed for this application.

Program Execution:

The program lights up 24 LED's in sequential order, one LED at a time. The sequence is: port A, port C, port B,
repeat. The current port in the sequence starts with bit 0 high, and moves bit by bit to bit 7 then all its bits are
cleared and the bit pattern is followed in the next port in sequence.

Refer to the assembly language listing below. The 8255A is put in mode 0, and Ports A, B, and C are
programmed as outputs to drive the LED's. The carry flag is set and the accumulator is cleared, then the main
loop is entered. The main loop has three loops nested within it: one for port A, C and B and they are executed in
that order. Each of the nested loops perform the same function but for different ports. They rotate the carry bit
through the accumulator and before each display there is a CALL to a delay routine to allow the previous output
LED to be shown long enough to tell us where the bit is within the 24 port pins. When the carry bit has rotated
out of the accumulator the loop falls through to the next nested loop. When all three nested loops are finished
the program jumps back to the first nested loop.

Assembly language listing

PORTA EQU 0C0H ; 8255 PORT A
PORTB EQU 0C1H ; 8255 PORT B
PORTC EQU 0C2H ; 8255 PORT C
CONTRL EQU 0C3H ; CONTROL REG
DELAY EQU 14H ; SERVICE FOR READING KEYPAD
MOS EQU 1000H ; MOS CALL ADDRESS

ORG 0FF01H
MVI A,80H ; CONFIGURE MODE 0 WITH ALL PORTS OUTPUT
OUT CONTRL ; WRITE TO CONTROL REG.

MVI A,0 ; START WITH ACC=0
STC ; SET CY

SHPRTA: CALL SHFTDLY ; SHIFT ACC WITH CY
OUT PORTA
JNC SHPRTA ; LOOP TILL CY SET

SHPRTC: CALL SHFTDLY ; SHIFT ACC WITH CY
OUT PORTC
JNC SHPRTC ; LOOP TILL CY SET

SHPRTB: CALL SHFTDLY ; SHIFT ACC WITH CY
OUT PORTB
JNC SHPRTB ; LOOP TILL CY SET

JMP SHPRTA ; DO PORT A AGAIN

... program continued on next page

Application 10-5

;
; Rotate the Acc with the CY and delay if CY not set.
;
SHFTDLY: MVI C,DELAY ; SELECT THE DELAY SERVICE

LXI H,8000H ; DELAY PERIOD
CNC MOS ; DO A MOS SERVICE CALL IF NO CY
RAL ; ROTATE LEFT THROUGH CY
RET

Enter the following machine language program into memory and run it.

ADDRESS DATA DESCRIPTION ADDRESS DATA DESCRIPTION
FF01 3E MVI A,80 FF18 CD CALL FF23
FF02 80 FF19 23
FF03 D3 OUT C3 FF1A FF
FF04 C3 FF1B D3 OUT C1
FF05 3E MVI A,00 FF1C C1
FF06 00 FF1D D2 JNC FF18
FF07 37 STC FF1E 18
FF08 CD CALL FF23 FF1F FF
FF09 23 FF20 C3 JMP FF08
FF0A FF FF21 08
FF0B D3 OUT C0 FF22 FF
FF0C C0 FF23 0E MVI C,14
FF0D D2 JNC FF08 FF24 14
FF0E 08 FF25 21 LXI H,8000
FF0F FF FF26 00
FF10 CD CALL FF23 FF27 80
FF11 23 FF28 D4 CNC 1000
FF12 FF FF29 00
FF13 D3 OUT C2 FF2A 10
FF14 C2 FF2B 17 RAL
FF15 D2 JNC FF10 FF2C C9 RET
FF16 10
FF17 FF

	App. 1 Count Down Timer
	App. 2 Waveform Generaor
	App. 3 Temperature Sensor
	App. 4 Interfacing a Photocell
	App. 5 DC Motor Speed Control
	App. 6 Display and Keypad Decoder
	App. 7 Controlling an LCD Module
	App. 8 Capacitance Meter
	App. 9 Interfacing a Stepper Motor
	App. 10 Interfacing an 8255A PPI

