
PRIMER TRAINER
LAB MANUAL

COPYRIGHT 2002 Eric Rossi
MANUAL REVISION 1.1

September 2002

Table of Contents

INTRODUCTION TO COMPUTERS . 1

COMPUTER NUMBER SYSTEMS . 6

COMPUTER LOGIC OPERATIONS . 9

COMPUTER LANGUAGES . 12

USING THE MONITOR OPERATING SYSTEM . 19

GETTING STARTED . 21

SOFTWARE SINGLE STEPPING AND BREAKPOINTS . 29

LOADING REGISTERS . 35

TRANSFERRING DATA BETWEEN REGISTERS . 42

INCREMENTING AND DECREMENTING REGISTERS . 46

PROGRAM LOOPING . 51

PUSHING, POPPING, AND THE STACK . 62

SUBROUTINES AND SERVICES . 69

USING THE ENHANCED MONITOR OPERATING SYSTEM (EMOS) . 78

Appendix A Jumper Descriptions and I/O addresses

Appendix B Instruction Set Encyclopedia

Appendix C ASCII Character Set

1

LAB #1
INTRODUCTION TO COMPUTERS

INTRODUCTION

A computer is an electronic device that follows instructions in order to do useful work. There are many different kinds
of computers. The computers used by the IRS for instance, require a great deal of computing power in order to
process tax returns for the millions of people in the United States. These computers are quite large and cost millions
of dollars. The desktop computer on the other hand is not as powerful as the IRS computer, but then again it is quit
smaller and doesn't cost near as much. The desktop computers size is made possible by the use of microprocessors.
Microprocessors are small electronic chips (integrated circuits) that contain at least 75% of the computing power of
the digital computer. Besides reducing the size of a computer, microprocessors are also responsible for reducing their
cost. The small size and low cost of microprocessors has facilitated their use in almost every electronic device from
hospital equipment to military weapons, from toys to home appliances.

All computers regardless of their size and power require some way to input and output data in order to be useful. A
desktop computer for example receives input commands from the keyboard and displays output on the computer
monitor. A modern microwave oven which also contains a microprocessor receives input commands from the keypad
and the output is seen on the calculator type display. Their are however, other inputs and outputs not so easily
identified on the microwave oven. There is an input switch on the door that turns the light on and the oven off. There
is an output control line that turns the oven on and off in response to the various inputs of the system.

Memory is another required component of a computer. Memory is used to store computer instructions (programs) and
data. Again in the example of the microwave oven, the program is what controls the oven and allows you to enter the
amount of time (the data) to cook your food.

Computers basically perform three functions: inputing data, processing the data and outputing data. Some devices that
are commonly used to input information to a computer are keyboards, dip switches and joysticks. Common computer
output devices are light emitting diodes (LEDs), liquid crystal displays (LCDs), video monitors, and printers. Disk drives
and modems are common devices that have both input and output characteristics.

A microprocessor, which is also referred to as the central processing unit (CPU), processes the information that is input
to the computer and determines what data will be sent to the output devices. The microprocessor has within it an
arithmetic logic unit (ALU) which performs addition, subtraction, comparisons and logical functions, which will be
discussed later. One thing you should know about computers is that they don't really think like people do. They can
only do what the computer manufacturer or the computer user tells them to do. The microprocessor can do many
different things, but in order for something useful to be done it must follow a group of instructions called a program.
Below is a "program" or a group of instructions that you could write which a person may follow in order to quench their
thirst.

1) Get a glass.
2) Get some milk from the refrigerator.
3) Pour the milk in the glass.
4) Drink the milk.
5) If you are still thirsty continue from step three.
6) Put glass in sink
7) put milk in refrigerator.

In the same way, by knowing the microprocessor's language, you can give it a group of instructions that it can perform.
The microprocessor would perform these instructions exactly as you commanded it. The microprocessor can only obey
one instruction of a program at a time and these instructions tell the microprocessor whether to input data, output data
or perform one of the ALU functions.

REFERENCE

(Reference chapters/page numbers in Kleitz & Goankar texts)

2

MICROCOMPUTER BLOCK DIAGRAM
FIG. 1.0

OBJECTIVES

* To understand the building blocks of the computer.
* To define the various types of memory.
* To define Input/Output (I/O) as it is used on the 8085 microprocessor.
* To define the internal structure of the 8085 microprocessor.

PROCEDURE

The 8085 microprocessor with the addition of a few components is a fully functioning computer system. The
microprocessor is the brains of the computer, and it executes the instructions that make up a computer program. These
instructions are held in memory where the microprocessor accesses them as required. Each instruction is placed in
a different location of memory with its own unique address, much the same as each house on a street has its own
address. The address is placed on the address bus where it is sent to the memory. The memory then places the
instruction at that address on the data bus where it is sent to the microprocessor. This is basically how a computer
executes instructions. The address bus always carries the address from the microprocessor to the memory or I/O
device. The data bus on the other hand is used to send information both from and to the microprocessor and therefore
is called a bidirectional bus. Another bus present in the microprocessor system is the control bus. This bus basically
consists of the control lines which keep the microprocessor operational. For example whether to read or write from
memory, do an I/O operation, wait till the memory is ready, etc.

MEMORY

The 8085 microprocessor can access 65536
individual memory locations in the range 0 to
65535 in decimal (0 to FFFF in hex) but only
one at a time. There are two types of memory
in most microprocessor based systems,
memory that can be read but not written to,
which is called Read Only Memory (ROM), and
memory that can be read from and written to,
which is called Read/Alter Memory or Random
Access Memory (RAM).
ROM memory retains its contents when power is
removed. Memory that retains its contents when
power is removed is called nonvolatile memory.
RAM memory on the other hand loses all of its
contents when power is removed and is referred
to as volatile memory. Adding a battery to a
RAM chip can change it from a volatile memory
to a nonvolatile memory.

Both RAM and ROM chips have address pins
which are connected to the microprocessor's
address pins. These pins are connected
through what is called an address bus and
through this bus the microprocessor can select
a memory location for writing or reading of
data. Writing to ROM chips has no effect since
it is read only memory. The RAM and ROM
chips in the PRIMER Trainer have eight data pins which send data to, or receive data from the microprocessor through
a group of eight connections called the data bus. Since there are 8 data pins on the RAM and ROM chips, this allows
numbers from 0 to 255 (0 to FF in hex) to be read from or written to each memory location.

3

FIG. 1.1

INPUT/OUTPUT

The 8085 microprocessor can also send data to and receive data from chips other than the RAM or ROM. When the
microprocessor wants to perform input or output it disables the RAM and ROM chips and sends an input/output (I/O)
address to the address bus. The I/O address is only 8 bits but it appears on the lower 8 bits (A0-A7) and the higher
8 bits (A8-A15) of the address bus simultaneously. Since the address generated is only 8 bits long, only I/O addresses
from 0-255 (0-FF hex) can be selected. Most microprocessor-based systems have circuitry which decode the address
from the address bus and select the appropriate I/O device. Usually these devices are dedicated to either input only
or output only. If an input device has been selected, 8 bits of data is transmitted from the input device to the data bus
and into the microprocessor. If an output device has been selected, the 8 bits of data is sent from the microprocessor
to the data bus and to the output device.

The control bus is a group of connections which provide control over reading or writing of memory or I/O devices.
Figure 1.0 is a block diagram showing the way the CPU (microprocessor) connects to the memory and I/O devices
through the address bus, data bus and control bus.

REGISTERS

The 8085 microprocessor has within it temporary storage devices called registers. Registers work similar to RAM in
that they store binary values. The 8 bit general purpose registers provided by the 8085 are named A, B, C, D, E, H
and L. The A register is often referred to as "the accumulator". The A register in addition to being used as a general
purpose register has some unique abilities. The A register is always used for all I/O instructions, logic instructions, and
most arithmetic instructions. For example if you subtract two numbers the difference would be located in the A register.

The 8085 has many instructions which use these individual general purpose registers. There are also instructions which
view a pair of the general purpose registers as a single 16 bit register. The register pairs that are used in these
instructions are BC, DE, and HL. When they are paired with other registers C,E and L represent the least significant
8 bits of the register pairs (bits 0-7) and B,D and H represent the most significant 8 bits (bits 8-15). Some instructions
view the A register and flag register (described below) as a 16 bit register called the processor status word (PSW).
The A register is the most significant 8 bits and the flag register is the least significant 8 bits of register. Figure 1.1
shows the PSW with a diagram of the individual bits of the flag register.

4

8085 REGISTERS
FIG. 1.2

There are also registers that are dedicated to special purposes. These registers and their descriptions are as follows:

The stack pointer (SP) is a 16 bit register which points to a memory location in RAM which will hold temporary
values in an area of RAM called the stack. The stack is explained in chapter 15 of The Intelligent
Microcomputer by Goody.

The program counter (PC) is a 16 bit register which points to the memory location of the next machine
language instruction to be executed.

The flag register is an 8 bit register which has individual bits, called flags, that indicate the result of arithmetic
or logical operations. The flags are covered in later labs.

QUESTIONS 1.0

1. Define microprocessor.

2. Why does a computer need I/O?

3. What type of memory can only be read from?

4. What type of memory loses the information contained in it when power is removed?

5. Is the address bus unidirectional or bidirectional?

6. Is the data bus unidirectional or bidirectional?

5

7. How many memory locations can the 8085 access?

8. How many I/O devices can the 8085 access?

9. What is another name for the A register?

10. What makes the A register different from the other general purpose registers?

11. How many bits are contained in the A register?

12. How many bits are contained in a register pair?

13. How many bits are contained in the stack pointer?

14. How many different flags are available in the 8085?

15. What does PSW stand for?

16. When referring to the B/C register pair which register holds the 8 bits of low order data?

6

LAB #2
COMPUTER NUMBER SYSTEMS

INTRODUCTION

In order to be able to program a computer, its necessary to be able to speak in a form that the computer can
understand. Computers being digital devices (using two states) use the binary number system as their native tongue.
The hexadecimal number system, like binary is a power of two number system also. Each hexadecimal digit is
represented by 16 different numeric symbols verses 2 for a binary digit. Hexadecimal therefore is more efficient then
using binary when listing computer codes and since hexadecimal is a power of 2 number system conversion to the
binary number system is a simple procedure.
Since we humans use the decimal number system, converting from decimal to binary (the number system computers
understand) is necessary in order to program computers at a low level.

OBJECTIVES

* Define a bit.
* Define a byte.
* Define a word.
* Define binary code.
* Define hexadecimal code.
* Convert a binary number to decimal.
* Convert a binary number to hexadecimal.
* Convert a hexadecimal number to binary.
* Define least significant and most significant.

PROCEDURE

A microprocessor performs all arithmetic in binary, although it may be translated to different forms (i.e. decimal,
hexadecimal..). The binary number system consists of the numbers 0 and 1 which are called binary digits or bits for
short. There are several words used to represent the binary numbers 0 and 1 and they are often used interchangeably,
depending on the context in which they are used. They are as follows:

binary 1 = true on high set +5 volts set

binary 0 = false off low reset 0 volts clear

In the 8085 microprocessor, binary numbers are organized in groups of 8 bits which are called bytes and groups of
16 bits which are called words. When referring to a byte, it is often necessary to describe particular bits, so the
numbering of each of the 8 bits is as follows:

7 6 5 4 3 2 1 0

So in the binary number, 10001000, bit 7 and bit 3 are 1 and the rest are 0. In binary number 00010001, bit 4 and bit
0 are have a value of 1 and the rest are 0. When referring to a word, the bits are numbered:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

As you know, in decimal numbers, each position of a digit has a different weight. For example in the decimal number
1732: (The digit numbers are read from right to left, 0 to 3)

digit # weight value = decimal result
3 10 * 1 = 10003

2 10 * 7 = 7002

1 10 * 3 = 301

0 10 * 2 = 20

sum of numbers * weights = 1732

7

In the same way the binary system has weights for each bit position. The weight for a bit is 2 to the power of the bit
number (2). The binary number 11111111 can be converted to decimal by knowing the weights of each bit,(bit number)

as in the example below:

bit # weight value = decimal result
7 2 * 1 = 1287

6 2 * 1 = 646

5 2 * 1 = 325

4 2 * 1 = 164

3 2 * 1 = 83

2 2 * 1 = 42

1 2 * 1 = 21

0 2 * 1 = 10

 sum of bits * weights = 255

If one of the bit positions had been a zero, that bit position's weight would not have been added to the sum.

To convert a decimal number to another base repeatedly divide the number by the base until the quotient equals zero.
For example to find the binary (base 2) equivalent of the decimal number 58 we proceed as follows:

58 / 2 = 29 with a remainder of 0 (LSB)
29 / 2 = 14 with a remainder of 1
14 / 2 = 7 with a remainder of 0
07 / 2 = 3 with a remainder of 1
03 / 2 = 1 with a remainder of 1
01 / 2 = 0 with a remainder of 1 (MSB)

The binary equivalent of the decimal number 58 is therefore: 111010. The binary number 111010 can be varified by
converting it back to decimal. Conversion from decimal to hexidecimal can be accomplished by dividing the decimal
number by 16 instead instead of 2. The remainder when dividing by 16 will range from 0 to 15, or 0 to F in hex (see
below). The three forms of numbers we will use in this manual are: binary, hexadecimal (hex, for short) and decimal.
Below is a table of the binary, and hex equivalents of the decimal numbers 0 through 20.

DECIMAL HEX BINARY
 0 0 0000
 1 1 0001
 2 2 0010
 3 3 0011
 4 4 0100
 5 5 0101
 6 6 0110
 7 7 0111
 8 8 1000
 9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111
16 10 10000
17 11 10001
18 12 10010
19 13 10011
20 14 10100

8

Hexadecimal is used to represent binary values because it is more efficient then binary and it is very easy to convert
numbers from binary to hexadecimal. For example, to convert the following binary number to hexadecimal:

101101101101011

Start from the right digit and put the number into groups of four binary digits (bits). If there are not enough bits in the
number to make a full four bits in the group on the left side, add zeros to the left of the number.

0101 1011 0110 1011

Now replace the binary groups with their hexadecimal equivalents using the table above and you will get the following
result:

5 B 6 B

It is just as easy to convert hex to binary. Merely replace each hex digit with the corresponding 4 binary digits from
the table above and you have your binary number, for example:

HEX
F C 1 8

BINARY
1111 1100 0001 1000

In this manual you will see the words "least significant" or "low order" and "most significant" or "high order". These refer
to the mathematical weight of the part of a number that is being described. In all number systems the digit on the left
end is the most significant or high order digit and the digit on the right end is the least significant or low order digit. For
example in the binary number 00010010, the bit on the left end is the most significant bit (MSB) and the bit on the right
end is the least significant bit (LSB). In the hex word 01FF the left two digits are the most significant byte and the two
right digits are the least significant byte.

QUESTIONS 2.0

1. What two numbers represents a binary digit?

2. Give an example of non-numeric names for the two numbers of question 1.

3. How many bits are in a byte?

4. How many bits in a word?

5. Give the decimal equivalent of the binary number 10010110.

6. Give the hex equivalent of the binary number 10010110.

7. Give the binary equivalent of the decimal number 115.

8. Give the hex equivalent of the decimal number 307.

9. Give the binary equivalent of the hex number D6.

10. Explain what is meant when hex is said to be more efficient for the user than binary.

9

LAB #3
COMPUTER LOGIC OPERATIONS

INTRODUCTION

Computers being digital systems, are programmed using digital logic instructions. The hardware of a computer consists
of logic gates which in conjunction with the software determines what the computer does. A special group of
instructions called logic instructions, lets computer programs make decisions much the same as the logic gates of a
computer make decisions needed for the computer to operate. As a matter of fact a computer can simulate in software,
the operation of hardware logic gates.

If a computer program allows a light to come on if one of two switches is in the ON position, it is using digital logic to
accomplish the operation. Other possibilities include the light only being turned on if both the switches are in the ON
position. Logic instructions also allow us to isolate a particular bit position or positions. Using logic instructions a bit
can be turned on, turned off, or turned to the opposite state, while not disturbing other bit positions. If each bit position
is visualized as being connected to a light, a alarm, a motor, etc. with a 1 turning the particular device on and a 0
turning it off, it becomes apparent that being able to control each bit position individually is an important feature.

REFERENCE

(Reference chapters/page numbers in Kleitz & Goankar texts)

OBJECTIVES

* Define the AND operation.
* Define the OR operation.
* Define the EXCLUSIVE OR (XOR) operation.
* Define the NOT operation.
* Define mask.

PROCEDURE

The 8085 supports 4 logical operations:

1) The AND operation takes two input bits and returns a 1 bit if both input bits are 1 and a 0 bit if either bit is 0.

2) The OR operation takes two input bits and returns a 1 bit if either input bit is 1 and a 0 bit if both input bits are
0.

3) The XOR operation takes two input bits and returns a 0 bit if the input bits are the same and a 1 bit if they are
different.

4) The NOT operation takes one input bit and returns a 1 if the input bit is 0 and returns a 0 if the input bit is 1.
This is called complementing, inverting, or toggling the bit.

The 8085 performs these operations 8 bits at a time, by performing the logic operation on each bit position, For
example:

 01110010 <-X
AND 10010011 <-Y

 00010010 <-Z

Bit 0 of X is ANDed with bit 0 of Y and gives the result in bit 0 of Z. Bit 1 of X is ANDed with bit 1 of Y and gives the
result in bit 1 of Z and the pattern continues on up to bit 7.

10

The following shows the way logical operations work with bytes:

00010010 01100111 11101101

AND 01000010 OR 10101110 XOR 01111001 NOT 11001010
00000010 11101111 10010100 00110101

If we envision each bit position as being connected to a different light in a house, using logic operations we can control
each light individually or in groups. The trick is to control a particular light without knowing the current state of each
light and not upsetting the other lights in the house. For example to turn on light #2, a one must be in bit position two.
To turn off light #2, a zero must be in bit position two. We would like to turn light #2 on and off without disturbing any
of the other seven lights in the house. For the following example the arbitrarily chosen byte below represents the current
state of eight different lights in a house.

01001010

This byte tells us that light #6 is on, light #3 is on, light #1 is on, and all the other lights are off. To turn light #2 on we
use a mask value. A mask is a value used to manipulate different bit positions. This value when used with the
appropriate logic operation performs the function we desire. The mask value chosen for the example is:

00000100

This mask value when ORed with the current state of the lights will force light #2 on.

01001010
OR 00000100

01001110

Notice that all the lights that were on are still on, and all the lights that were off are still off, with the exception of light #2.
If later we decide to turn light #2 off, we use a different mask value and a different logic operation. Finding the correct
mask value for turning the light off is not as simple as it was for turning the light on. First we must take the complement
using the NOT operation, of the mask we used to turn the light on, then we AND this value with current state of the lights
in order to turn the light off. This translates into simply placing a zero in any bit positions to be turned off and a one
in all other bit positions.

NOT 00000100
11111011

The complementing of the mask used to turn the light on, gives us the new mask value needed to turn the light off. This
new mask value has a zero in each bit position to be turned off, and a one in all other bit positions.

01001110
AND 11111011

01001010

ANDing the new mask value with current state of the lights turns light #2 off, while not affecting any of the other lights.
The current state of the lights is now the same as it was before we turned light #2 on. By adding more ones to the mask
value, more then one light can be turned on, and by adding more zeros, more then one light can be turned off.
Remember to use the OR operator to turn things on and the AND operator to turn things off.

To toggle or compliment a bit position the exclusive OR (XOR) logic operator is used. This allows a bit to be switched
from a high to a low or from a low to a high without knowing the current state of the bit position. The mask value should
contain a 1 in each bit position that requires toggling and 0's in all other bit positions. Like the other logic operations
this only affects the selected bit positions. All positions that contain a 0 will retain their original values. For example
if we wish to toggle bits 0 and 6 of the result of the above AND operation, the mask value would be 01000001 and yield
a result of:

01001010
XOR 01000001

00001011
Notice that only bit positions 1 and 6 have changed, all other bit positions have retained the value they had before the
XOR operation took place.

11

QUESTIONS 3.0

1. Complete the following logic operations:

11100110 10111011 00110110
AND 00110101 OR 01101001 XOR 10011010 NOT 11101011

2. Define the term mask.

3. Give the 8 bit mask value and the logic operation to turn on bit #3 and bit #5 without disturbing any of the other
bits.

4. Give the 8 bit mask value and the logic operation to turn off bit #1 and bit #4 without disturbing any of the other
bits.

5. Give the 8 bit mask value using the XOR operation to complement all 8 bits of the following byte:

10011100
XOR ________

01100011

6. Give the 8 bit mask value and the logic operation to toggle bit #7 and bit #6 without disturbing any of the other
bits.

7. If a value is ANDed with itself what would be the result?

8. If a value is ORed with itself what would be the result?

9. If a value is exclusive ORed with itself what would be the result?

10. IF a value is exclusive NORed (exclusive NOT ORed) with itself what would be the result?

11. Define the term toggle.

12

LAB #4
COMPUTER LANGUAGES

INTRODUCTION

In order for computers to be useful they must be told what to do. When a computer is told how to perform a given task
it is said to be programmed. The process of programming a computer requires a computer language. A computer
language, like a spoken language, provides a means for us to tell the computer what to do. You see computers do not
yet speak fluent English. As with spoken languages, there are also many computer languages. Each computer
language has its advantages and disadvantages depending on the type of program that is being written. All computer
languages however, end up producing instructions that the particular computer understands. These instructions which
the computer understands is referred to as the computers instruction set (the set of instructions understood by the
computer). Not all computers have the same instruction set, in fact most computers have different instruction sets. A
compiler or assembler, is used to translate the computer language statements of a computer program into the machine
code (also referred to as object code) consisting of instructions from the computers instruction set. Compilers and
assemblers are actually computer programs themselves, that are used to translate other computer programs. Once
translated the computer can then execute the program.

Computer languages can be broken down into two categories, high level languages and low level languages. High level
languages are more English like and much easier to program in then low level languages. Languages such as BASIC,
PASCAL, and C are examples of high level languages. Low level languages are more cryptic and difficult to program
in, but produce programs with less instructions, that run much faster then high level languages. Examples of low level
languages are machine language and assembly language. Low level languages have a one to one correspondence with
the computer's instructions. Each assembly language statement translates into one computer instruction, whereas with
a high level language, one statement might translate into several hundred computer instructions.

When programming in machine language, the programmer acts as the translator. This is referred to as hand
assembling because you are basically doing by hand what an assembler program does. The appropriate instruction
is found, then the machine code is looked up and entered into the computer. A machine code is just a number that
denotes a particular computer instruction specified by the manufacturer. On older computers the machine code was
actually entered and displayed in binary using switches and lights, on computers of today this is rarely the case.
Today, when machine code is used, it is usually entered and displayed in hex, with either the hardware or the software
doing the conversion to or from binary. Remember computers at the lowest level (the machine level) must execute
binary codes.

REFERENCE

(Reference chapters/page numbers in Kleitz & Goankar texts)

OBJECTIVES

* Define computer programming.
* Define computer language.
* Understand the difference between low level and high level languages.
* Define machine language.
* Define assembly language.
* Know the five different 8085 instruction categories.
* Define op code.
* Define mnemonics.
* Understand flowcharting concepts.

13

PROCEDURE

The 8085 microprocessor has 246 instructions and each instruction is represented by an 8 bit binary value, which is
called an op code or an instruction byte. The Instruction Set Encyclopedia ((c) Intel Corporation) included in appendix
B, divides these instructions into five general categories which are as follows:

1) Data Transfer Group Moves data between registers or between memory locations and registers.
2) Arithmetic Group Adds, subtracts, increments or decrements data in registers or memory.
3) Logic Group AND's, OR's, XOR's, compares, rotates or complements data in registers or

between memory and a register.
4) Branch Group Initiates conditional or unconditional jumps, calls, returns, and restarts.
5) Stack, I/O, and Control Group Includes instructions for maintaining the stack, reading from input ports,

writing to output ports, setting and reading interrupt masks, and changing the
flag register.

Some machine language instructions require a byte or even two bytes of additional information often referred to as
operands. The microprocessor reads the instruction and determines whether it requires an extra byte or two bytes.
If the instruction requires another byte the 8085 will get the byte from the next consecutive address following the
instruction byte, and if the instruction requires two bytes the 8085 will get them from the next two consecutive addresses
following the instruction byte. With instructions that require two extra bytes, the byte following the op code is the least
significant byte and the second byte after the op code is the most significant byte. To help you remember this order,
remember that the high order byte is in the higher memory address than the low order byte.

Assembly Language

Intel (c) has designed a way to represent the 8085's machine language instructions using words called "mnemonics".
Using these mnemonics, a language called "assembly language" was created which allows you to write machine
language programs in a more readable form. Assembly Language programs are usally placed in a file known as the
Source file. This file is read in by the assembler and converted to machine language. Two special files are created
by the assembler the Object file and the Listing file. The Object file basically contains the machine language produced
by the assembler. The Listing file is a text file that is a combination of the Source and Object files containing both the
original assembly language with the corresponding machine language. Assembly language programs cannot be
understood by the 8085 microprocessor until it is translated to machine language with a program called an "assembler".
In the following lessons, programs will be listed in assembly language followed by the machine language translation of
the program.

Example 4.0 lists an arbitrary assembly language program, showing the four basic fields of a line of assembly language:
label, mnemonic, operand and comment. Note that assembly language programs usually don't have line numbers, but
these are included to aid in explaining assembly language.

EXAMPLE 4.0

 LABEL MNEMONIC OPERAND COMMENT
1 dips equ 12h ; port address for the dip switches
2 leds equ 11 ; port address of leds
3
4 org ff01h ; starting address of the program
5 loop: in dips ; load A register with the dip
6 ; switch values
7 cma ; compliment A register to convert to
8 ; positive logic
9 out leds ; output the DIP switch contents to leds
10 cpi 00000000b ; compare DIP switch to all zeros
11 jnz loop ; if DIP switch equals all zeros stop
12 ; else loop and try again
13 rst 7 ; stop program and return to MOS
14 end ; end of assembly language program

14

In order to make assembly language more readable and easier to modify, the provision was included which allows the
use of a string of characters called a symbol or label to represent a numerical value. In the program above, the string
of characters "dips" represents the value 12 hex, so line 7 which says "in dips" means, load the A register with the data
from input port 12 hex (which is the dip switch port). As you can see, this is more readable than its assembly language
equivalent "in 12h". The value of a symbol can be assigned using the EQU directive. Directives are used to instruct
the assembler and are not part of the 8085 instruction set, nor are they ever executed by the program being assembled.
Directives do not produce any machine code. The symbol on the left of the EQU directive is assigned the value on the
right. As you can see in line 1 "dips" is assigned the value 12 hex and in line 2 "leds" is assigned the value 11 hex.
Most assemblers assume that a number is decimal unless it is otherwise noted. Binary numbers are indicated by
ending with a "b" or "B". Hex numbers must begin with a decimal number and end with "h" or "H". If they don't begin
with a decimal number, the assembler will think they are labels, as in the case of the hex numbers DEAFh or BADh
(they look like words instead of numbers). Start the hex numbers with 0 to solve this problem (0DEAFh, 0BADh).

The ORG directive tells the assembler the starting address in memory of the instructions that follow it. Line 4 shows that
the program is to be assembled starting at address FF01h.

When a symbol is in the label field of a line, and there is a mnemonic and not the directive EQU for that line, its value
will be made the memory address of the opcode represented by the mnemonic. In line 5 of the program above, "loop"
is assigned the value of the memory address containing the opcode of the "in" mnemonic. Line 11 uses the value of
the label "loop" to produce the machine language for the "jnz" instruction.

Every character after a semicolon is considered a comment. Comments are used to describe the workings of a
program to a person who might be reading the assembly language. They have no effect on the program because when
the assembler encounters the ';' it ignores the rest of the characters on the current line.

A directive not included in the above program is the DS (Define Storage) directive. The DS directive tells the assembler
to set aside the number of bytes of memory specified by the value to the right of the mnemonic. This memory is
reserved for the storage of data instead of machine language. The locations allocated using the DS directive will
generally change (like variables) as the program executes and accesses these locations. These locations must be
initialized by the program at run time.

Another directive not included in the above program is the DB (Define Byte) directive. The assembler directive DB
takes the data that follows the mnemonic and stores the value(s) of the data in memory. The values can be binary, hex
or decimal numbers or a mixture of these but each number always uses one byte of memory. If the number is too large
to be stored in one byte of memory the assembler will give an error message. A DW (Define Word) directive is
provided for 16 bit data. The locations allocated by the DB or DW directives generally will not change (like constants)
as the program executes and accesses these locations. These locations are usually initialized at assemble time.

The directive END tells the assembler that this is the end of the program. The directives END, EQU, ORG, DB and DS
are all called "pseudo-ops", which means they are not translated into machine language directly. These pseudo-ops
are used by the assembler to aid in assembling the source program (the original assembly language program). Lines
5 through 13 contain mnemonics that actually correlate directly to machine language.

Below is the corresponding machine code in hex if the above program was assembled.

EXAMPLE 4.1

FF01 DB
FF02 12
FF03 2F
FF04 D3
FF05 11
FF06 FE
FFF7 00
FF08 C2
FF09 01
FF0A FF
FF0B FF

This code could now be entered into the trainer and executed.

15

 FIG. 4.0

Flowcharting

Before a program is actually written, a flowchart is usually constructed detailing the program algorithm (solution to the
programming problem). A flowchart is a graphical representation of the operation of the program. A flowchart is
composed of several different types of graphical blocks connected with lines showing program flow. The four most
important of these blocks is shown in Figure 4.0.

An oval shaped block is used to indicate the start or the end of a flowchart segment. A parallelogram is used to indicate
input or output, for instance reading from the DIP switches or writing to the LEDs. A diamond shape block is used when

making a decision, such as is the value greater than the setpoint yes or no. A rectangular block is used to indicate
action, for example turn light on, sound alarm, etc. There are many other specialized symbols, but they are not required
within this lab book.

When programming in assembly language, particularly for programs of 50 or more lines (statements/instructions),
flowcharting and good documentation is essential. Assembly language programs are inherently difficult to understand,
especially if someone else wrote the program. Flowcharts and good commenting practices go a long way in making
a program easily readable and maintainable.

Flowcharts are not only used to aid in making a program more understandable, but also in the development of the
program itself. A programmer typically will start with a high level flowchart depicting the operation of the program. With
a high level flow chart, each block of the flowchart can represent hundreds of assembly language statements. The high
level flowchart is an overview of the system. Each block of the high level flowchart is then broken down into a
intermediate or low level flowchart. With a low level flowchart, each block may translate into one to five assembly
language instructions. From the low level flowchart, the programmer writes the program. This high to low level process
is known as top-down development. For simple programs a low level flowchart may be all that is necessary or for very
simple programs no flowchart at all may be necessary.

Listed below is a high level BASIC program to count down from 10 and to 0 and exit, and the same program written in
assembly language and machine language. Following these program examples is the corresponding low level flowchart.
Note the flowchart is the same for all three examples.

BASIC PROGRAM EXAMPLE 4.2

LINE #. STATEMENT COMMENT
1 LET COUNT=10 SET COUNT TO 10
2 LET COUNT=COUNT-1 DECREMENT COUNT BY 1
3 IF COUNT<>0 THEN GOTO 2 GOTO LINE #2 IF COUNT IS NOT 0
4 STOP STOP PROGRAM EXECUTION

ASSEMBLY LANGUAGE EXAMPLE 4.3

LABEL OPCODE OPERAND COMMENT
ORG FF01H START PROGRAM AT ADDRESS FF01 HEX

START: MVI A,10 SET REGISTER A TO 10
LOOP: DCR A DECREMENT A BY 1

JNZ LOOP JUMP TO LOOP IF A IS NOT 0
HLT HALT PROGRAM EXECUTION

16

 FIG. 4.1

MACHINE LANGUAGE EXAMPLE 4.4

ADDRESS CONTENTS INSTRUCTION COMMENT
FF01 3E MVI A,10 SET REGISTER A TO 10
FF02 0A SECOND BYTE OF INSTRUCTION
FF03 3D DCR A DECREMENT A BY 1
FF04 C2 JNZ FF03 JUMP TO FF03 IF A IS NOT 0
FF05 03 LOW ORDER ADDRESS
FF06 FF HIGH ORDER ADDRESS
FF07 76 HLT HALT PROGRAM EXECUTION

The low level flowcharting example below for simplicity sake does not contain any input or output. As you can see the
flowchart's graphical representation eases program understanding.

This program example is very simple in nature, allowing an almost one-to-one correspondence between BASIC and
Assembly language, in most cases this is not so. The simplicity of the example program requires only a low level
flowchart to completely represent the program.

17

EXERCISE 4.0

1. Hand assemble the following mnemonic instructions into machine code. A table in appendix B contains each
instruction with its corresponding op code. Some instructions are 1, 2, or 3 bytes in length depending on the
operands of the instruction.

ORG FF01
FF01 ______ RAR

FF02 ______ MOV A,B

FF03 ______ ADD C

FF04 ______ MVI D,0A3H

FF05 ______

FF06 ______ LHLD 1234H

FF07 ______

FF08 ______

FF09 ______ ANI 101B

FF0A ______

FF0B ______ RST 7

QUESTIONS 4.0

1. What is the importance of a computer language?

2. Why would a program be written in assembler instead of BASIC?

3. Why would a program be written in C instead of assembler?

4. What language is programmed using strictly numbers?

5. When entering machine code into memory why is it better if the code is in hexadecimal form?

6. Each computer (machine) instruction is referenced by a numeric code called an ______________.

7. What is the minimum number of bytes of a 8085 computer instruction?

8. What is the maximum number of bytes of a 8085 computer instruction?

18

9. The first byte of a computer instruction is always the __________________.

10. Subsequent bytes of a computer instruction are always the _________________.

11. What is another name for assembler directives?

12. What is the purpose of assembler directives?

13. All comments in an assembly language program must begin with which character?

14. Symbolic addresses used in assembly language programs are referred to as _________________.

15. In the machine code example 4.1, why is the first instruction at address FF01.

17. In the machine code example 4.1, the contents of addresses FF01 and FF02 were translated from what line
in the corresponding assembler program of example 4.0?

18. The file that contains the original assembly language program is called the _______________ file.

19. The file created by the assembler which contains only the machine code is called the _______________ file.

20. The file created by the assembler which contains both the assembly code and the machine code is called the
_________ file.

21. Why is it important to construct a flowchart before starting to write a program?

22. Modify the flowchart of Fig. 4.1 in order to have the program count to 10 and repeat indefinitely.

19

LAB #5
USING THE MONITOR OPERATING SYSTEM

INTRODUCTION

A computer operating system (OS) is a computer program that oversees the operation of the computer. It is responsible
for initializing the system and controls the entry and display of data. The OS also provides services, that user written
software can take advantage of, such as displaying numbers. If there were no OS services, the programmer would
have to write the software necessary to perform these tasks.

A monitor assists the programmer by allowing the viewing and alteration of memory and the ability to run programs.
Other monitor functions can include single stepping of programs, examining and altering the contents of CPU registers,
and setting breakpoints. Combining the monitor and the operating system provides an ideal training environment, where
programs can be entered, run and tested. The Monitor Operating System (MOS) provides all of the features mentioned
above and more.

REFERENCE

(Reference chapters/page numbers in Kleitz & Goankar texts)

OBJECTIVES

* Define operating system.
* Define monitor.
* View and change the contents of memory.
* View and change the register contents.
* Run a program.

PROCEDURE

The Monitor Operating System (MOS) is a powerful software program that provides the user with the tools to enter and
edit programs as well as run, test, and debug machine language programs. MOS uses 6 numeric LEDs for display
output. This type of display is similar to the displays used in calculators, but allows letters in addition to numbers.

The display at power-up reset, contains the default PC address (FF01H) in the left four digits of the display. This is
what is referred to as the ADDRESS FIELD. In the right two digits are the contents of the displayed address. This field
is known as the DATA/OP FIELD. The MOS uses twenty keys for input, with some keys having a second function which
can be invoked using the "FUNC." key. Each key produces an audible tone when pressed, providing feedback for the
user.

KEY DESCRIPTION

0-F Numeric keys. When a numeric key (0-F HEX) is pressed, the numeric value appears at the right side
of a data field display and the number that was there before will be shifted left. To correct an entry
error just repeat, using the correct number key and the error will be overwritten.

Step This key causes the microprocessor to execute one instruction (single step) at the current program
counter address (the value of the P.C. register). Single stepping is a valuable debugging tool that
allows the user to examine registers and memory after each instruction executes. The Step key
executes the instruction at the program counter address and then returns to the Monitor Operating
System and waits for another user command. When you single step a CALL instruction that is calling
a subroutine in ROM (such as a service call), the processor will execute the subroutine at full speed
and stop at the instruction immediately following the CALL instruction.

Dec. This key decrements the program counter and shows the program counter in the left four displays and
the data at the program counter address in the right two displays.

20

Enter
 &

Inc. When the monitor is in the data entry mode, pressing this key stores the data that is on the two far
right displays into the program counter address then increments the program counter and displays the
new program counter address in the left four displays and the data at that address in the two far right
displays. This key is also used to store new values for the registers, the breakpoint and the stack
content (see the section below about second function keys). If the register, breakpoint or stack
content information displayed has been changed but you don't want to enter it, then simply press the
"Func." key twice and the original information is maintained. This key can also be used to just view
data in memory.

Func. This selects the second function of the keys that have two functions. When this key is pressed "Func."
appears on the display, and if a key is pressed which has a second function, that function will be
performed. This key may be pressed two times in a row to exit the current mode and return to the data
entry mode.

(Below are the second functions of the keys with two functions)

B.P. This key displays the current software breakpoint address. If 0000 is displayed, then no breakpoint
has been established. The displayed value may be changed by entering the desired breakpoint
address in hex using the numeric keys and then pressing the "Enter & Inc." key. When the program
reaches the breakpoint the software breakpoint address is automatically reset to 0000. NOTE:
Obviously, if the program execution never reaches the breakpoint address, the program will not stop
at the breakpoint address. If the breakpoint address points to a byte other than the op code in a two
or three byte instruction, the program will not stop at the breakpoint address. Also any address
specified that references addresses in EPROM (addresses below 8000 hex) will not stop execution,
even if the op code at that address is executed.

S.C. This displays the 16 bits that are at the top of the stack, or in other words, the data that will be removed
from the stack with the next POP, RET or XTHL instruction. The two displays on the far left represent
the data at SP + 1 (stack pointer address + 1) and next pair to the right represent the data at SP. The
displayed value may be changed by entering the desired hex number using the numeric keys and then
pressing the "Enter & Inc." key.

A.F. This key displays the contents of the A register (Accumulator) and the condition Flags. The A register
and the flags are displayed as four hex digits in the four displays starting at the left. The digit pair on
the left of the four displays show the value of the A register and the pair on the right show the value of
the condition Flags. The displayed value may be changed by entering the desired hex number using
the numeric keys and then pressing the "Enter & Inc." key. The condition Flags are defined bit by bit
as follows:

BIT 0 CARRY FLAG (if this bit is 1 it indicates a carry)

BIT 1 NOT USED

BIT 2 PARITY FLAG (if this bit is 1 it indicates an even number of bits,
odd parity)

BIT 3 NOT USED

BIT 4 AUX. CARRY FLAG (if this bit is 1 it indicates a carry from bit 3 to bit 4
in the A register)

BIT 5 NOT USED

BIT 6 ZERO FLAG (if this bit is 1 it indicates a zero result)

BIT 7 SIGN FLAG (if this bit is 1 it indicates bit 7 of the A register is
a 1)

21

For example, if the display reads: 0044 A.F.
This indicates the contents of the A register is 0 and the ZERO and PARITY Flags are both set.

B.C. This key displays the contents of the BC register pair. The BC register pair is displayed as four hex
digits. Starting from the left display, the first pair of displays represent the contents of the B register
and the second pair represent the contents of the C register. The displayed value may be changed
by entering the desired hex number using the numeric keys and then pressing the "Enter & Inc." key.

D.E. This key displays the contents of the DE register pair. The DE register pair is displayed as four hex
digits. Starting from the left display, the first pair of displays represent the contents of the D register
and the second pair represent the contents of the E register. The displayed value may be changed
by entering the desired hex number using the numeric keys and then pressing the "Enter & Inc." key.

H.L. This key displays the contents of the HL register pair. The HL register pair is displayed as four hex
digits. Starting from the left display, the first pair of displays represent the contents of the H register
and the second pair represents the contents of the L register. The displayed value may be changed
by entering the desired hex number using the numeric keys and then pressing the "Enter & Inc." key.

S.P. This key displays the contents of the stack pointer. The stack pointer is a 16 bit register, displayed
as four hex digits. The displayed value may be changed by entering the desired hex number using
the numeric keys and then pressing the "Enter & Inc." key.

P.C. This key displays the contents of the program counter. The program counter is a 16 bit register,
displayed as four hex digits. The displayed value may be changed by entering the desired hex number
using the numeric keys and then pressing the "Enter & Inc." key.

Run This key causes the microprocessor to execute a program at full speed starting at the current program
counter (PC) address. The program will continue to execute until an optional software breakpoint is
encountered or until a RST 7 (FF hex) instruction is executed.

GETTING STARTED

Before attempting to perform the lessons that follow make sure that in option jumper 1 (OJ1), pins 1 and 2 are
connected together, as well as pins 3 and 4. You should have a MOS or EMOS EPROM in the U2 socket and both OJ2
and OJ3 should have connectors in position "A" if you are using MOS or position "B" if you are using EMOS

You need to provide the PRIMER with an appropriate power source. The PRIMER requires a power supply in the range
of 7 to 10 volts DC that can supply more than 480 milliamps of current. This power may be taken from a bench power
supply, a wall mounted power supply or any other suitable power source. The power supply's output plug tip must be
positive and the sleeve must be negative. A wall mounted power supply that meets all of the previous stated
requirements may be obtained from EMAC Inc.

Once power has been correctly applied to the PRIMER's power jack, press the reset button to assure that the system
is properly initialized. The PRIMER should give a tone and then show hex numbers on the digital displays. If this
doesn't happen after about 2 seconds remove the power and make sure that the power supply meets the above stated
requirements. If the power supply meets the requirements, but nothing happens you may need to do some hardware
troubleshooting or send the board back to EMAC for repair.

If the PRIMER is now running you may want to run the PRIMER diagnosis function. This function allows you to check
the DIP switches, digital output LEDs, A/D convertor, 8155 timer, speaker, numeric displays, keypad and the optional
serial RS-232 port. If you do not have the serial communications option or if you have it but do not want to test it, skip
to To begin diagnosis.

Before the PRIMER can communicate through the serial port, its baud rate must be the same as the PC or terminal the
PRIMER is communicating with. The PRIMER's baud rate can be set by placing a jumper in JP1 in the position
corresponding to the desired baud rate. The baud rates are labeled 300, 600, 1200, 2400, 4800, 9600 and 19,200 next
to JP1. The PC or terminal must use serial protocol with 1 stop bit 8 data bits and no parity.

22

To begin diagnosis:

Press the "Func." key then "1". When the diagnosis begins, "....r.d." will be shown on the numeric displays indicating
that "RAM Diagnostics" are occurring. If a faulty RAM location is detected, its memory address will be shown on the
left 4 numeric displays and "b.r." (indicating Bad RAM) will be shown on the right 2 displays. Pressing a key following
this error message will cause the diagnosis to continue. The RAM diagnostics should be completed in around 30
seconds, if the RAM is okay. If an optional 32k RAM is in memory slot 1 and option jumper OJ3 is in position "A" you
should turn off the PRIMER and move the jumper to position "B" then turn it on again and run the diagnosis function.
If the RAM is okay, and you want the position "A" memory map again, turn off the PRIMER and move the jumper to its
original position. Note that no memory check is done on the RAM within the 8155 chip if a 32k RAM is in slot 1.

When the RAM check is finished and the PRIMER is connected to a terminal through the serial communications option,
the following will be shown on the terminal display:

 UART test
>

If you type a key at the terminal, its hexadecimal ASCII value will be shown on the left two displays on the PRIMER, and
the character will be echoed back to the terminal display. For example if the letters "A" and "B" are typed at the
terminal, the following will be shown on the terminal display:

 UART test
>A
>B
>

Note: If your terminal has the ability to "auto echo" you will see 2 characters displayed for each key pressed.

Also, after the RAM check is done, the hexadecimal representation of the A/D input will be shown on the right 2
displays. If you want to test the A/D convertor you need to connect a variable voltage source, ranging from 0 to +5
volts, to the analog input of the external digital I/O connector CN3 (this is above and to the left of the
ADDRESS/REGISTER PAIR displays). This can be simply done with a 10K potentiometer by connecting the wiper to
the analog input and one of the other two connections to +5V and the other to ground. Connector CN3 provides +5 volts
on pin 22, analog input on pin 20 and ground on pin 18. When the analog input voltage is ground the display should
show "00". As you slowly increase the voltage to 5 volts, the display will show a value from 02 to 3F hex. Also when
the display no longer shows "00" the speaker will begin to make a high pitched tone and which will gradually become
lower pitched as the voltage approaches 5 volts. Turn the voltage back to 0 and the tone will stop.

Each DIP switch is programmed to control an individual digital output LED. The best way to test the DIP switches and
the LEDs is to turn each of the switches on, allowing only one switch on at a time. Then turn all the switches on at once,
and finally turn all of them off.

Pressing one of the keys on the keypad will cause the hexadecimal value of that key to be shown on the middle two
displays. The hexadecimal values of the keys, starting at the top row and reading from left to right are 00 to 0F for the
first 4 rows and 14 to 17 for the last row.

When you want to return to the Monitor Operating System, just press the reset button.

Note the following:

M The PRIMER is rugged but it can be damaged. Please handle it with reasonable care. The underside of the
board is exposed, so be careful not to place it on any object that could cause damage.

M The the voltage regulator gets hot so avoid touching it.

M There are DIP (dual inline package) switches on the PRIMER that are required in several labs. Please do not
use a lead pencil or ink pen for this purpose because the lead or ink can get into the switch.

In the following sections of the lab you will be introduced to the monitor operating system. Feel free to at any time refer
back to the key descriptions until they become familiar to you.

23

VIEWING AND CHANGING MEMORY CONTENTS

When you first turn on the PRIMER trainer, the displays marked "ADDRESS/REGISTER PAIR" will show "FF01" and
the display marked "DATA/OP" will show some random byte in hex. The number on the "ADDRESS/REGISTER PAIR"
display is the value of the program counter register (PC) and the number on the "DATA/OP" display is the data at the
memory address pointed to by the program counter. Since PC = FF01 it "points" to the data at that memory address,
so if the data at that memory address happened to be the hex number DB then "DB" would be shown on the "DATA/OP"
display. Below is an illustration the program counter pointing to the data at memory address FF01. The values shown
in the memory addresses in the diagram most likely are not the actual values that are in the PRIMER's memory. This
is because the memory contains mostly random values when the PRIMER is turned on; The values were chosen just
for examples.

ADDRESS DATA
FF01 DB <-PC
FF02 12
FF03 D3
:
: (memory addresses FF04-FFFF)

When an address and the data at that address is displayed, the PRIMER is in "data entry mode". Press the "enter" key
and the PC register will be incremented to FF02 and shown on the "ADDRESS/REGISTER PAIR" display and the data
pointed to by the new value of the PC will be shown on the "DATA/OP" display. If the data at memory address FF02
happened to be 12 hex, then "12" would be shown on the "DATA/OP" display. The program counter pointing to the data
at memory address FF02 is illustrated below.

ADDRESS DATA
FF01 DB
FF02 12 <-PC
FF03 D3
:
: (memory addresses FF04-FFFF)

Press "enter" as many times as you want. Press the "Dec." key and the value displayed for PC will be decremented
and the number on the "DATA/OP" display is the byte of data pointed to by the new PC memory address. Press the
"Dec." key until PC is FF01 again or press the reset button.

Type "F" and "C", and you will see the hex number "FC" on the "DATA/OP" display. If you type a wrong digit,
or you want to change the value you typed, just type the two correct hex digits and they will overwrite the others. Now
type "0" and "7" and press "enter" and the PC will be incremented and the PC value FF02 will be displayed along with
the data pointed to by the new value of PC. Type the number 55 and press the "Dec." key. You will see that the data
at address FF01 is now 07. Press the "enter" key and you will see that the data at address FF02 is not 55 as was typed
before. This is because hex numbers that are typed aren't stored until the "enter" key is pressed. This is a useful
feature when you have typed a number and decide you do not want it to be stored in memory or wish not to change
the original value.

LOADING A PROGRAM INTO MEMORY

In the lessons that follow, it is necessary to load programs into memory. The machine language for the programs are
listed in the same format as the following:

PROGRAM EXAMPLE 5.0

ADDRESS DATA INSTRUCTION
FF01 DB IN 12
FF02 12
FF03 D3 OUT 11
FF04 11
FF05 C3 JMP FF01
FF06 01
FF07 FF

24

Before entering a program into memory, press the reset button. This resets the general purpose registers and flag
register to zero and sets the stack pointer to FFD4 and the program counter to FF01. Look at the program data table
above. In order for a machine language program to be loaded into memory properly, the addresses under the column
marked "ADDRESS" must contain the data to the right of them in the column marked "DATA" after you have completed
loading the data. The column marked "instruction" just tells what instruction the data stands for, so this can be ignored.
Since the PC value is FF01, type DB, which is the data from the table that belongs in that address, and press "enter".
The PC is now FF02 so type 12 and press enter. Continue typing the data which belongs in the current PC address
and pressing enter until all the addresses listed in the table have been loaded. Now press the "dec." key and verify that
the data at the current PC address is the same as the data in the program data table. If the data is not the same, just
type the correct number and press enter and then continue pressing the "dec." key and verifying data until the program
counter is FF01 again. Once you become comfortable with entering programs into memory you may want to skip the
verification process. Don't be alarmed if you type a program incorrectly and it doesn't work, because it is impossible
for a program to damage the PRIMER. The worst thing that can happen is that you would have to press the reset button,
or if the program was corrupted you may have to enter the program into memory again.

VIEWING AND CHANGING REGISTER CONTENTS

It is a good learning aid to be able to examine the values of the 8085's registers. To view the contents of a register you
must first press the "func." key (which will cause the display to show "Func.") and then the key corresponding to the
register you want to examine. When the "func." key is pressed, the next key pressed will invoke the alternate function
of the key. The keys that have alternate functions have the standard function followed by a slash "/" and the alternate
function. For example the "8/B.P." key's standard function is digit 8 and after the "func." key is pressed the alternate
function "B.P." will be invoked.

Each line in the table below shows the key that should be pressed after pressing the "func." key and the data that will
be shown in the "ADDRESS/REGISTER PAIR DISPLAYS" as a result.

25

 ADDRESS/REGISTER PAIR DISPLAYS

 DATA DISPLAYED ON DATA DISPLAYED ON
KEY DS1 (LEFT DISPLAY) DS2 (RIGHT DISPLAY)
A.F. = A register flag register
B.C. = B register C register
D.E. = D register E register
H.L. = H register L register
S.P. = High order byte of SP Low order byte of SP
P.C. = High order byte of PC Low order byte of PC

Pressing one of the above keys after the "func." key is pressed will cause the value in the registers to be shown in the
displays marked "ADDRESS/REGISTER PAIR" and the register name to be shown in the display marked "DATA/OP".
After this, pressing any key other than the numeric keys (0-F) will cause the PRIMER to return to the data entry mode.

If you want to change the value of the A register, press the "func." key and then the "A.F." key and as a result the
displays show "0000 A.F.". To change the value of the A register to 1F hex without changing the flag register, press
the following keys in order: "1","F","0","0","enter". After pressing the "enter" key the display will no longer show the A
register and flag register, instead it will return to the data entry mode. View the PSW (the A register and flag register)
again by typing the "func." key, then the "A.F." key. You will see that the values that were entered before are still in
the registers. Notice that in order not to change the value of the flag register, it was necessary to enter its value again
(00). If the flag register had been 40 and you wanted to change the A register to 2B without changing the flag register
you would have to press the following keys (don't do this, this is just an example): "2", "B", "4", "0", "enter".

Now we will change the value of the flag register and we will assume that it doesn't matter what the value of the A register
is. To make the flag register 41 hex type "4", "1". Notice that after pressing these two keys, the two zeros have been
shifted to the A register display. Now press "enter", then view the A register and flag register again and you will see
the new value (0041 hex) that was just entered.

As described earlier, the flag register is an 8 bit register which has individual bits called flags, that indicate the result
of arithmetic or logical operations. To see what the values of the individual bits are, you must convert the hexadecimal
value of the flag register to binary. If you don't remember how to do this, refer back to lab #2. For example, to find out
what the current flag values are, convert 41 hex to binary.

 HEX
 4 1

 BINARY
 0100 0001

 0 1 0 0 0 0 0 1
 | | | | | | | |
 | | | | | | | |__________________ Carry Flag
 | | | | | | |____________________ undefined
 | | | | | |______________________ Parity Flag
 | | | | |________________________ undefined
 | | | |_____________________________ Auxiliary Carry Flag
 | | |_______________________________ undefined
 | |_________________________________ Zero Flag
 |___________________________________ Sign Flag

According to the diagram above, the Carry and Zero flags have a value of 1 and the Sign, Auxiliary Carry, and Parity
flags have a value of 0. If the flag register is D5, all the defined flags are set. You may need to refer back to this
diagram in later lessons when they ask you to examine the flag register. A shortcut to determining the status of the
carry flag is to examine the rightmost digit of the flag register. If the digit is even (0,2,4,6,8,A,C,E) then the carry flag
is 0, otherwise, if the digit is odd (1,3,5,7,9,B,D,F) the carry flag is 1.

26

SOME TIPS ABOUT CHANGING REGISTERS

You can point the PC (program counter) register to any location by changing the PC register's contents. This
eliminates the need of pressing the "enter" or "dec." keys many times in order to view or change data at memory
addresses that are distant from the current address.

If you are typing a new value for a register and you haven't pressed "enter" since you started doing this, you can press
the "step","func." or "dec." keys to return to the data entry mode and the register will not be changed.

RUNNING A PROGRAM

Before running a program, it is very important that the PC be placed at the opcode of first instruction to be executed
(in this case FF01). The PC can be placed at this address by using the DEC and ENT keys or by changing the PC
register.

Once the PC is correctly positioned at the opcode of the first instruction, run the program by pressing "Func." and the
"Step/Run" key. You should see that as you move the DIP switches the digital output LEDs will turn off or on
accordingly. Now press the reset button and the program will stop, the digital output LEDs will turn off and the display
will show "FF01 db". The program details are not important at this time and will be covered later in other labs.

27

EXERCISE 5.0

1. Enter the following hex bytes into the memory locations shown below and verify the memory contents for
accuracy.

FF01 11
FF02 04
FF03 03
FF04 2E
FF05 06
FF06 63
FF07 24
FF08 3E
FF09 01
FF0A 47
FF0B 07
FF0C 4F
FF0D 97
FF0E FF

2. The addresses FF01 to FF0E now contains the machine code of a short program. Run this program starting
at address FF01 (the first op code of the program) and examine the register contents after its execution. To
run the program change the contents of the PC to FF01, then press the RUN key. Fill in the register and flag
contents below.

PC_____ B____ C____ D____ E____ H____ L____ A____ Sf_ Zf_ ACf_ Pf_ Cf_

3. When programming in machine language, the programmer translates each mnemonic instruction by hand, into
machine code. This is referred to as hand assembling the program (see Lab #4). When programming in
assembly language this translation is accomplished by the assembler. The translating back from machine code
into mnemonic instructions is referred to as disassembling the program. Disassemble by hand the program
of exercise question 5.0.1 starting at address FF01 and list the address and the mnemonic of each opcode
below. The first address and mnemonic is given. A table in appendix B lists each instruction and its
corresponding op code. There are 10 op codes (instructions) in the program. Remember that each instruction
can have 1, 2, or 3 bytes depending on the operands.

1. FF01 LXI D,0304H

2. _____ _______________

3. _____ _______________

4. _____ _______________

5. _____ _______________

6. _____ _______________

7. _____ _______________

8. _____ _______________

9. _____ _______________

10. _____ _______________

28

QUESTIONS 5.0

1. When the Trainer is powered up or reset what are the values of the registers and the flags?

PC_______ B_____ C_____ D_____ E_____ H_____ L_____ A_____ Sf___ Zf___ ACf___ Pf___ Cf___

2. MOS does the initialization of all the registers mentioned in question #1. Which of these registers is the only
register actually initialized by the 8085 microprocessor prior to the MOS initialization and to what value?

3. When displaying the Accumulator and the Flags which register is displayed on the right two digits?

4. In order to execute a program that is in memory, what first must be done?

5. Why does the ENT/INC key have two names ENT and INC?

6. Memory locations below address 8000h cannot be changed, why?

7. What type of memory must be used to enter or change programs?

8. Why is it important for the Monitor Operating System to be in nonvolatile memory?

9. List a practical use for a disassembler.

10. What software is responsible for producing the audible beep when the Trainer is reset?

11. Explain the relationship between the DIP switch ON/OFF positions and the output ON/OFF status of the LEDs,
when running the PROGRAM EXAMPLE 5.0.

12. Explain the function of the reset button.

29

LAB #6
SOFTWARE SINGLE STEPPING AND BREAKPOINTS

INTRODUCTION

Being able to run a program at the fastest possible speed is important to maximize throughput. On an IBM PC this
translates to less time the user has to wait for a response. Sometimes during program development however, it's
beneficial to slow the processor down so as to see what is going on internally. This process allows the user to examine
the registers and memory locations after each instruction. If this process is done an instruction at a time, where the
user has control after the execution of each instruction, then it is referred to as single stepping. If this process is
performed on a number of instructions, where the user has control after the execution of that number of instructions,
then it is referred to as tracing. A program being traced still displays the registers and possibly certain memory
locations after each instruction executes. Single stepping and program tracing are important tools in debugging and
developing programs.

There are two forms of single stepping, software single stepping and hardware single stepping. Software single stepping
as the name implies is performed entirely in software. Embedded within MOS is the program that performs the single
stepping function. This program executes one instruction and saves the contents of the registers, then returns to MOS
allowing the user to enter another command. The user can then view the contents of the registers if need be.

The software single stepper is most useful for development and debugging of software.

Another useful debug and development tool is the breakpoint. The breakpoint, like the single step, comes in two
varieties, software and hardware. The software breakpoint is accomplished through software by inserting a special
software interrupt code in place of the instruction, at the address where you want to program to break. When this
special instruction is executed, the program jumps back to MOS, which replaces the original instruction and returns
control to the user. The breakpoint and single step functions when used together provide a powerful debugging aid.
For example, if the user suspects a bug in the second half of a program, the user can set a breakpoint over the first
half of the program, and begin single stepping at the suspect code.

REFERENCE

(Reference chapters/page numbers in Kleitz & Goankar texts)

OBJECTIVES

* To become familiar with the software single stepping process.
* To become familiar with the software breakpoint process.
* To become familiar with the following 8085 instructions.

IN <byte> opcode = DB

Load the A register with the data that is on the input port specified by the byte following the
instruction. No flags are affected. This instruction is 2 bytes in length.

CMA opcode = 2F

The contents of the accumulator are complemented (zero bits become 1, one bits become 0;
1's complement or NOT function). This instruction is 1 byte in length.

30

FIG. 6.0

OUT <byte> opcode = D3

Send the data in the A register to the output port specified by the byte following the instruction.
No flags are affected. This instruction is 2 bytes in length.

JMP <addr> opcode = C3

Load the program counter (PC) with the address contained in the two bytes following the
instruction. The first byte following the opcode is the least significant byte of the address, the
second byte is the most significant byte of the address. No flags are affected. This
instruction is 3 bytes in length.

PROCEDURE

Below is a flow chart of a simple program that reads the DIP switches (the 8 position DIP switch labeled MANUAL
DIGITAL INPUTS), complements the value, and outputs this value to the output port's LEDs. The value of the DIP switch
requires complementing due to its use of negative logic (on produces a binary 0 and off, a binary 1). In fact it is very
common for digital I/O ports to use negative logic, due to the fact that more current can be sinked than sourced with
these type of devices. The digital output port LEDs, for example, require a low to turn on. When using the DIP
switches, rather than having to think in negative logic, complement the DIP switch value immediately after inputting the
value. You can then treat the DIP switch value as a positive logic value.

31

ASSEMBLER PROGRAM EXAMPLE 6.0

leds equ 11h
dips equ 12h

org 0ff01h
loop: in dips ; load A register with DIP switch values

cma ; complement A register
out leds ; output A register to LEDs
jmp loop ; jump to loop
end

MACHINE LANGUAGE PROGRAM EXAMPLE 6.1

ADDRESS DATA INSTRUCTION
FF01 DB IN 12
FF02 12 I/O ADDRESS
FF03 2F CMA
FF04 D3 OUT 11
FF05 11 I/O ADDRESS
FF06 C3 JMP FF01
FF07 01 LOW ADDRESS
FF08 FF HIGH ADDRESS

Notice in the machine language program EXAMPLE 6.1 that the JMP instruction occupies three memory locations.
The first byte of the instruction is the opcode. The next two bytes of the instruction comprise the memory address
where it will jump. Since all memory addresses in the 8085 are 16 bits and each memory location holds one byte, two
memory locations are required to hold a memory address. When a 16 bit address or quantity is stored in memory, the
low part of the address or number is stored in the lower address and the high part of the address or number is stored
in the higher address. I/O addresses on the other hand, only require an 8 bit address, allowing the IN and OUT
instructions to occupy just two bytes. The IN and OUT instructions are the only two 8085 instructions that allow writing
to (OUT) or reading from (IN) an I/O device.

To run this machine language program, turn on the Trainer and the program counter address FF01 will be shown on
the left four displays. Load the machine language data from EXAMPLE 6.1 into memory. Once the whole program has
been entered correctly return the program counter address to FF01 by pressing the reset button. Run the program by
pressing "Func." and the "Step/Run" key. You should see that as you move the DIP switches, the digital output LEDs
will turn off or on accordingly.
Since this program uses the JMP <address> instruction it will not stop until the reset button is pressed. After pressing
the reset button, the program will stop, the digital output LEDs will turn off and the display will show "FF01 db".

Single Stepping

The PRIMER allows you to execute a single machine language instruction starting at the address in the PC register.
This procedure is called single stepping. After the instruction is completed, the PC register points to the address of the
next instruction and the PRIMER will be returned to data entry mode. To single step the first instruction, press the
"stp/run" key and the displays will show "FF03 2F" which is the new value for PC and the data pointed to by PC. The
IN instruction was executed and the PC register was returned with the address of the next instruction, the CMA
instruction. To single step the rest of the program, do the following:

1) Single step again and the display will show "FF04 D3". The CMA instruction has been executed and the PC
register was returned with the address of the OUT 11 instruction.

2) Single step again and the display will show "FF06 C3". the OUT 11 instruction has been executed and the PC
register was returned with the address of the JMP FF01 instruction.

3) Single step again and the display will show "FF01 db". This display shows FF01 because that is the value that
was loaded into the PC register by the JMP FF01 instruction. You can see that the mnemonic came from the
instructions ability to cause the program counter to "jump" to another location. PC now points to the IN 12
instruction again.

32

4) Single step again and the display will show "FF03 2F". The IN instruction has been executed and the PC
register was returned with the address of the CMA instruction.

Right after step three, the value of the DIP switch has been loaded into the A register and it can be viewed by pressing
"Func." then the "A/A.F." key. The value of the A register will be shown in the pair of digits on the left. Change the
value of the A register (in this program the flag values don't matter). Now do step one and the A register will be
complemented, and after step two you will see the digital output LEDs now show the new value of the A register*. If you
press "Step" four more times, the IN instruction will change the A register to the value of the DIP switches again, CMA
will complement it and the OUT instruction will display the new value of the A register on the digital output LEDs.

* REMEMBER: The PRIMER was designed so the digital output LEDs will turn on when a logic 0 is output to a
particular bit of port A. So, for example, if 01h is output to the port all LEDs will be turned on except for LED 0, and
if F0h is output to the port, all LEDs will be turned off except LEDs 3 to 0.

Breakpoints

Sometimes it is desirable to run full speed to a certain part of a program before single stepping, to run full speed through
a long loop or subroutine, or to see if a program ever gets to a certain memory location. These things can all be
accomplished through the use of breakpoints.

To select a breakpoint, press the "func." key followed by the "8/B.P." key and the display will show the breakpoint
address in the "ADDRESS/REGISTER PAIR" displays and "B.P." in the "DATA/OP" display. A breakpoint is selected
the same way you change a register and all the rules regarding changing registers apply to setting a breakpoint; just
type the address and press "enter". Remember that B.P. (breakpoint) is not a register within the 8085 microprocessor,
it is just a function supported by the MOS. When setting a breakpoint it is very important that the breakpoint memory
address be that of an opcode. The program will not break if, the address of an operand is given, the opcode does not
get executed, or the breakpoint address is in EPROM. Once a program breaks the breakpoint is cleared and must be
set again if another breakpoint is to occur.

Set a breakpoint at FF04 which contains the opcode "D3" of the OUT instruction. Set the PC to address FF06 and run
the program by pressing "Func." and the "Step/Run" key. The microprocessor will run the program at full speed
breaking at address FF04. At this point the user can examine registers, single step, or set a new breakpoint.

33

EXERCISE 6.0

Tracing a program, as previously mentioned, is a useful debugging aid. We can use the single stepper to trace a
program by interrogating any registers or memory locations of interest, and logging this information for each executed
instruction. To trace the above program press reset and verify the first line of the table below. Step the microprocessor
and fill in the second line. Continue in this fashion until all lines of the table are complete. Before starting, put switches
1,2,3,6, and 7, in the ON position and 4, 5, and 8, are in the OFF position.

INSTRUCTION 0 PC FF01 A 00 OPCODE DB MNEMONIC IN 12

INSTRUCTION 1 PC _________ A ______ OPCODE ______ MNEMONIC _____________

INSTRUCTION 2 PC _________ A ______ OPCODE ______ MNEMONIC _____________

INSTRUCTION 3 PC _________ A ______ OPCODE ______ MNEMONIC _____________

INSTRUCTION 4 PC _________ A ______ OPCODE ______ MNEMONIC _____________

Before continuing, move DIP switches 5, 6, and 7, to the OFF position with all other switches ON.

INSTRUCTION 5 PC _________ A ______ OPCODE ______ MNEMONIC _____________

INSTRUCTION 6 PC _________ A ______ OPCODE ______ MNEMONIC _____________

INSTRUCTION 7 PC _________ A ______ OPCODE ______ MNEMONIC _____________

INSTRUCTION 8 PC _________ A ______ OPCODE ______ MNEMONIC _____________

Note that the opcode and mnemonic reflect the next instruction to execute. In this program the only registers that were
utilized were the PC and the A register, requiring only these registers to be traced. Programs can be traced without
the use of a microprocessor by determining how each instruction affects registers and memory and filling in an
appropriate table by hand. This method of tracing a program is referred to as hand tracing. Hand tracing is often used
when developing a program to verify the program execution.

QUESTIONS 6.0

1. As stated above all memory addresses of the 8085 microprocessor are 16 bits. What is the maximum amount
of memory that the 8085 microprocessor can directly access?

2. As stated above, all I/O addresses of the 8085 microprocessor consist of 8 bits. How many different
Read/Write I/O devices can the 8085 microprocessor directly access?

3. If a software breakpoint was set at address FF04 and the program was run starting at address FF06, would the
processor break?

4. If a software breakpoint was set at address FF05 and the program was run starting at address FF01,
would the processor break?

5. Starting with the PC set at address FF07, step 2 instructions and fill in the table below.

INSTR. 1 PC _________ A ______ OPCODE ______ MNEMONIC _____________

INSTR. 2 PC _________ A ______ OPCODE ______ MNEMONIC _____________

34

6. Explain the results obtained in question 6.0.5.

7. If the A register contained the value 5A Hex, what would be the value of the A register after executing
the CMA instruction? What would be the value of the A register after executing two successive CMA
instructions?

8. For each of the following instructions state YES or NO to whether the instruction affects any of the
microprocessor flags (refer to Appendix B).

IN <BYTE> __________

OUT <BYTE> __________

CMA __________

JMP <ADDRESS> __________

9. After executing the following machine instruction, what address would be in the PC?

FF01 C3
FF02 50
FF03 05

10. When a software breakpoint occurs does the microprocessor stop running?

12. Why would program execution not break if a software breakpoint was set to an address in EPROM?

35

LAB #7
LOADING REGISTERS

INTRODUCTION

Before a microprocessor can do any useful work registers need to be loaded with appropriate values. Some of these
values may be 8 bit values and require storage in a single register. Other values may be 16 bits in length and require
a register pair to hold the value. Values larger than 16 bits are generally stored in memory. Instructions that load
registers, or move data from one place to another are referred to as Data Transfer Instructions.

REFERENCE

(Reference chapters/page numbers in Kleitz & Goankar texts)

OBJECTIVES

* To be able to understand the instruction coding process for the data transfer instructions presented in this lab.

* To be able to understand immediate addressing.

* To become familiar with the following 8085 instructions.

MVI r,<data8> opcode = (depends on register)

MVI r,<data8> is the move immediate instruction. This instruction is used to load
binary 8 bit data (<data8>) into the various microprocessor registers. MVI r,<data8>
is in the data transfer group of instructions and is a two byte instruction. The first
byte of the instruction contains the opcode which tells the processor the register (r)
where the data should be moved. The second byte contains the data. This
instruction is 2 bytes in length.

LXI rp,<data16> opcode = (depends on register pair)

LXI rp,<data16> is the load register pair immediate instruction. This instruction is
used to load binary 16 bit data (<data16>) into the various microprocessor register
pairs. LXI rp,<data16> is in the data transfer group of instructions and is a three
byte instruction. The first byte of the instruction contains the opcode, the next byte
contains the low order data byte, and the last byte of the instruction contains the high
order data byte. This instruction is 3 bytes in length.

RST 7 opcode = FF

The RST 7 is a special instruction that performs what is called a software interrupt.
Whenever this instruction is executed control is transferred back to MOS, allowing the
user to again enter commands. When writing a program on the PRIMER Trainer, this
instruction is used to terminate (end) the program.

36

PROCEDURE

This lab focuses on the MVI r,<data8> and LXI r,<data16> data transfer instructions. The "I" in each of these
mnemonics indicates that these instructions use immediate addressing. If an instruction uses immediate addressing,
the data is part of the instruction. In the case of the MVI r,<data8> instruction, the first byte of the instruction is of
course the opcode and the second byte of the instruction is the 8 bit data. The LXI rp,<data16> instruction is a three
byte instruction; the opcode is followed by two bytes comprising the 16 bit data.

The immediate addressing mode is just one of four addressing modes (Immediate, Register, Direct, and Register
Indirect) available on the 8085 microprocessor. The other three addressing modes will be presented in later labs.
Different addressing modes allow data to be manipulated in different ways, and provides the programmer the ability to
program efficiently. Some microprocessors such as the 8088 used in the IBM PC, have several addressing modes not
offered by the 8085. While these additional addressing modes make the 8088 processor more flexible, it makes it
comparatively more complicated than the 8085 microprocessor.

Using The MVI r,<data8> Instruction

MVI r,<data8> is a two byte instruction, where the opcode is followed by eight bits of data. To code the MVI r,<data8>
instruction, the first two most significant bits, called the instruction code, are 00. These two bits indicate the class of
instruction. The next three bits contain the register code that tells the microprocessor which register is the destination
for the data. The registers are identified by their code in the following table:

TABLE 7.0 8 Bit Registers

Bits Register Name

111 A
000 B
001 C
010 D
011 E
100 H
101 L

The final three bits are coded 110. These three bits are referred to as the instruction type and help further classify the
instruction.

EXAMPLES 7.0

Here are two examples of how the syntax for an MVI r,<data8> instruction opcode is coded:

Example 1
To move data to register A (MVI A,<data8>), the opcode would look like this in binary form:

Class A register code Type
00 111 110

When converted to hexadecimal, the byte would look like this:

0011 1110
3 E

37

Example 2
To move data to the C register (MVI C,<data8>), the opcode would look like this in binary form:

Class C register code Type
00 001 110

Converted to Hexadecimal, the byte would look like this:

0000 1110
0 E

EXERCISE 7.0

To move the binary data 01011111 (5F) to the A register, you could use the following machine language program:

 ADDRESS CONTENTS INSTRUCTION

FF01 3E MVI A,5F
FF02 5F Data
FF03 FF RST 7

MVI A,5F Moves the 8 bit data (5F) immediately following the opcode in memory (next address) to the A register
.

RST 7 terminates the program.

Follow the steps below regarding the above program of EXERCISE 7.0.

1. Enter the above program into the trainer.

2. Return the PC to address FF01 and run the program

3. After the program has run, Examine the A register by pressing "func." and "A/A.F.". The left two Hex digits

display the data, 5F in the A register.

4. Change the above program so that the value placed into the A register is F5 rather than 5F.

5. Run the program from address FF01 and verify your change.

6. Further modify the program so that F5 is now placed into the B register instead of the A register.

7. List the modified machine language program below.

ADDRESS CONTENTS INSTRUCTION

__________ ___________ _______________

__________ ___________ _______________

__________ ___________ _______________

38

Using The LXI rp<data16> Instruction

LXI rp,<data16> is a two byte instruction, where the opcode is followed by two bytes comprising a 16 bit data value.
The first byte following the opcode is the low order byte of the data. The second byte following the opcode (third byte
of the instruction) is the high order byte of the data. Remember for 16 bit values, the low order byte is in the lower
memory address and the high order byte is in the higher memory address. To code the LXI rp,<data16> instruction,
the first two most significant bits called the instruction code are 00. These two bits classify the instruction. Since this
instruction is similar to the MVI instruction the class is the same. The next two bits contain the register pair code that
tells the microprocessor which register pair is the destination for the data. The register pairs are identified by their code
in the following table:

TABLE 7.1 16 Bit Registers

Bits Register Pair Name

00 B --> IMPLIES B/C
01 D --> IMPLIES D/E
10 H --> IMPLIES H/L
11 SP

The "X" in the LXI mnemonic indicates that the instruction deals with 16 bit data values. Since certain instructions deal
with 8 bit values and other instructions deal with 16 bit values, the operands for the mnemonics can be the same. For
example the instruction MVI H,01 instruction would move the value 1 into the H register. Using the instruction LXI H,01
on the other hand would move the value 1 to the L register and the value 0 to the H register. Since the LXI instruction
deals with 16 bit values, the value 01 is treated as a 16 bit value (think of it as 0001 in Hex) and as such the High order
is loaded into the H register and the Low order is loaded into the L register. Note that 1, 01, or 0001 have all the same
value of one. The MVI H,01 instruction and the LXI H,01 instruction use the same operand of "H", although for the LXI
instruction H implies the H/L register pair.

The final four bits of the LXI instruction are coded 0001, which differentiates the LXI instruction from the MVI
instruction. These four bits are used to help further classify the instruction.

EXAMPLES 7.1

Here are two examples of how the syntax for an LXI rp,<data16> instruction opcode is coded:

Example 1

To move data to register pair H/L (LXI H,<data16>), the opcode would look like this in binary form:

Class H/L register code Type
00 10 0001

Example 2

To move data to the Stack Pointer register (LXI SP,<data16>), the opcode would look like this in binary form:

Class SP register code Type
00 11 0001

39

EXERCISE 7.1

To move the 16 bit data value "1234" to both D/E and H/L register pairs, you could use the following machine language
program:

 ADDRESS CONTENTS INSTRUCTION

FF01 16 MVI D,12
FF02 12 Data
FF03 1E MVI E,34
FF04 34 Data
FF05 21 LXI H,1234
FF06 34 Low Data
FF07 12 High Data
FF08 FF RST 7

Follow the steps below regarding the above program of EXERCISE 7.1.

1. Enter the above program into the trainer.

2. Return the PC to address FF01 and trace the program execution a step at a time (single step). Fill in the table
below.

INSTR. PC D E H L OPCODE MNEMONIC

0 FF01 00 00 00 00 16 MVI D,12

1 ______ ____ ____ ____ ____ ____ ____________

2 ______ ____ ____ ____ ____ ____ ____________

3 ______ ____ ____ ____ ____ ____ ____________

3. Change the above program so that the value 4321 is loaded into the B/C register pair rather than loading 1234
into the H/L register pair..

4. Run the program from address FF01 and verify your change.

5. List the memory values that are now present in the in addresses below.

FF01 _______

FF02 _______

FF03 _______

40

EXERCISE 7.2

Programs are normally written in assembly language and then translated into machine language. This eases the burden
of programming in machine language. Using instructions presented in this lab, translate (hand assemble) the assembly
language program below into machine language.

one equ 01
start equ FF01h

org start

lxi h,6789h
lxi d,2345h
mvi a,one
rst 7
end

1. Verify the execution of the above program, by single stepping the resulting machine code.

2. Once verified, list the machine language program below.

ADDRESS CONTENTS INSTRUCTION

__________ ___________ _______________

__________ ___________ _______________

__________ ___________ _______________

__________ ___________ _______________

__________ ___________ _______________

__________ ___________ _______________

__________ ___________ _______________

__________ ___________ _______________

__________ ___________ _______________

QUESTIONS 7.0

1. How many bytes comprise the MVI instruction?

2. How many bytes comprise the LXI instruction?

3. How many bytes comprise the RST 7 instruction?.

4. The "I" in the MVI and LXI instructions indicates what?

41

5. The "X" in the LXI instruction indicates what?

6. Give the mnemonic for the following opcodes, by decoding each of the Hex values.

36 Hex _____________ 01 Hex ______________

7. Define microprocessor addressing mode.

8. Define Immediate addressing.

9. Fill in the B and C register values after execution of the following machine code sequence.

FF01 01
FF02 11
FF03 00
FF04 03
FF05 22
FF06 FF

B = __________ C = __________

42

LAB #8
TRANSFERRING DATA BETWEEN REGISTERS

INTRODUCTION

Once data has been loaded into a register, there are often times when a copy of the data needs to be placed in another
register. Situations occur within programs that require the original data to be modified, making it necessary to use the
copy that was placed in another register for this purpose. More often than not, however, the need to change registers
is determined by the instructions being used. Certain instructions require the use of specific registers, facilitating the
need to move information from one register to another. For example the CMA (Complement Accumulator) instruction
operates on data held in the A register. The instructions covered in this lab belong to the Data Transfer group.

REFERENCE

(Reference chapters/page numbers in Kleitz & Goankar texts)

OBJECTIVES

* To be able to understand the instruction coding process of the MOV r1,r2 instruction.

* To be able to understand register addressing.

* To become familiar with the following instructions.

MOV r1,r2 opcode = (depends on registers)

MOV r1,r2 is the move register instruction. This instruction enables the 8 bit contents of
register r2 (source) to be copied to register r1 (destination). This instruction is 1 byte in
length.

XCHG opcode = EB

Exchanges the 16 bit value in register pair H/L with the 16 bit value in register pair D/E.
Register H is exchanged with register D and register L is exchanged with register E. This
instruction is 1 byte in length.

PROCEDURE

This lab looks at two data transfer instructions that allow data to be moved or exchanged between registers. The MOV
r1,r2 instruction uses register addressing to determine which registers are involved in the MOV instruction. With
register addressing the instruction contains (in coded form) the registers used by the instruction. The MOV r1,r2
instruction can therefore be and is, a single byte instruction. The XCHG instruction is a fixed instruction, using the H/L
register pair and the D/E register pair, so no operands are required. Since there can be no variation of this instruction
no addressing mode is required. The XCHG instruction is also a single byte instruction.

Using The MOV r1,r2 Instruction

MOV r1,r2 is a single byte instruction, where the opcode is the only byte of the instruction. Using register addressing,
no additional bytes are required. To code the MOV r1,r2 instruction, the first two most significant bits, called the
instruction code, are 01. These two bits indicate the class of the instruction. The next three bits contain the 8 bit
register code that tells the microprocessor which register is the destination for the data. The last three bits of the
opcode contains the 8 bit register code of the source register. The data is moved by the microprocessor from the
source register to the destination register. The registers are identified by their code in the following table:

43

TABLE 8.0 8 Bit Registers

Bits Register Name

111 A
000 B
001 C
010 D
011 E
100 H
101 L

EXAMPLES 8.0

Here are two examples of how the syntax for an MOV r1,r2 instruction opcode is coded:

Example 1
To move data to register A, from register B (MOV A,B), the opcode would look like this in binary form:

Instruction Destination Source
Class A register code B register code
01 111 000

When converted to hexadecimal, the byte would look like this:

0111 1000
7 8

Example 2
To move data to the C register, from the D register (MOV C,D), the opcode would look like this in binary form:

Instruction Destination Source
Class C register code D register code
01 001 010

Converted to Hexadecimal, the byte would look like this:

0100 1010
4 A

44

EXERCISE 8.0

1. Enter the program below into the trainer starting at address FF01.

 ADDRESS CONTENTS INSTRUCTION

FF01 01 LXI B,1234
FF02 34 Low Data
FF03 12 High Data
FF04 69 MOV L,C
FF05 60 MOV H,B
FF06 16 MVI D,56
FF07 56 Data
FF08 1E MVI E,78
FF09 78 Data
FF0A EB XCHG
FF0B FF RST 7

2. Return the PC to address FF01 and trace the program execution a step at a time (single step). Fill in the table
below.

INSTR. PC B C D E H L OPCODE MNEMONIC

0 FF01 00 00 00 00 00 00 01 LXI B,1234

1 ______ ____ ____ ____ ____ ____ ____ ____ _________

2 ______ ____ ____ ____ ____ ____ ____ ____ _________

3 ______ ____ ____ ____ ____ ____ ____ ____ _________

4 ______ ____ ____ ____ ____ ____ ____ ____ _________

5 ______ ____ ____ ____ ____ ____ ____ ____ _________

6 ______ ____ ____ ____ ____ ____ ____ ____ _________

3. In the above program of EXERCISE 8.0, if instruction MOV L,C was changed to MOV L,B and instruction MOV
H,B was changed to MOV H,C, what change could be made to instruction LXI B,1234 to allow the same final
register contents as listed in INSTR. 6 above for registers D, E, H, and L?

4. Write the shortest machine language program possible in terms of bytes, to initialize the A, B, C, D, E, H, and
L registers to zero. (Hint the program can be written in 8 or less bytes).

45

QUESTIONS 8.0

1. Give the mnemonic for the following opcodes, by decoding each of the Hex values.

47 Hex _____________ 6F Hex ______________

2. If the program of EXERCISE 8.0 had the following modification, what would be the register contents after the
RST 7 instruction executed?

MEMORY CONTENTS
FF0B EB
FF0C FF

Fill in the register contents in the blanks below.

PC B C D E H L

______ ____ ____ ____ ____ ____ ____

3. Explain the results of question 8.0.2.

4. What happens if you move the contents of the A register to the A register? Is the instruction MOV A,A a valid
instruction?

5. When the contents of the A register are moved to another register are the contents of the A register changed?

6. Give the Hex opcode for each of the following mnemonics.

MOV H,L _________

MOV B,C _________

7. In the program of EXERCISE 8.0, if a breakpoint is set at address FF03 and run from address FF01, does the
processor break at address FF03? Justify your answer.

8. Did any of the instructions in the program of EXERCISE 8.0 change any of the status flags? If so, list the
instructions that changed the flags?

46

LAB #9
INCREMENTING AND DECREMENTING REGISTERS

INTRODUCTION

The incrementing and decrementing of registers is a powerful feature. Using the increment instruction, we can count
the occurrences of some event, like the number of items that have come down an assembly line or the number of people
that have entered a building. Using the decrement instruction, we can set time limits on a particular activity or know
how much of a commodity is left. Later we will see how the increment and decrement instructions can be used to
sequence through memory to access data.

The increment and decrement instructions are part of the arithmetic group of instructions. The arithmetic group differs
from the data transfer group in that no instructions within the data transfer group affected the flags. Most instructions
within the arithmetic group, however, do affect the flags. Having the flags affected is important in making decisions
(when time gets to zero, sound an alarm). This decision making process is what gives the microprocessor its
"intelligence".

REFERENCE

(Reference chapters/page numbers in Kleitz & Goankar texts)

OBJECTIVES

* To understand how the flags are affected by the increment and decrement instructions.

* To understand the coding process for the increment and decrement instructions.

* To become familiar with the following 8085 instructions

INR r opcode depends on the operand

The INR r instruction increments the 8 bit register r by the value of one. All flags except the
carry flag are affected. This instruction is 1 byte in length.

DCR r opcode depends on the operand

The DCR r instruction decrements the 8 bit register r by the value of one. All flags except the
carry flag are affected. This instruction is 1 byte in length.

INX rp opcode depends on the operand

The INX rp instruction decrements the 16 bit register pair rp by the value of one. No flags are
affected. This instruction is 1 byte in length.

DCX rp opcode depends on the operand.

The DCX rp instruction decrements the 16 bit register pair rp by the value of one. No flags
are affected. This instruction is 1 byte in length.

47

PROCEDURE

The increment and decrement instructions come in 8 and 16 bit versions. As mentioned previously the "X" in the INX
and DCX instructions indicate that these instructions deal with register pairs (16 bit values). Another difference between
these instructions is the way they affect the status flags. The INR and DCR instructions affect all of the flags with the
exception of the carry flag. The INX and DCX instructions do not affect any flags. These instructions belong to the
arithmetic group and use register addressing to determine which register is incremented.

Coding the DCR r and INR r Instructions

The DCR r and INR r instructions are both single byte instructions and are coded similarly to the MVI instruction. The
instruction code for both these instructions is 00. The next three bits is the register field, which tells the microprocessor
which 8 bit register to increment or decrement. See TABLE 7.0, the table of 8 bit registers. The last three bits are the
instruction type and is used to further classify the instruction.

EXAMPLES 9.0

Here are two examples of how the syntax for INR r and DCR r opcodes are coded:

Example 1
To increment register A (INR A), the opcode would look like this in binary form:

Class A register code Type
00 111 100

When converted to hexadecimal, the byte would look like this:

0011 1100
3 C

Example 2
To Decrement register D (DCR D), the opcode would look like this in binary form:

Class D register code Type
00 010 101

Converted to Hexadecimal, the byte would look like this:

0001 0101
1 5

Coding the DCX rp and INX rp Instructions

The DCX rp and INX rp instructions are both single byte instructions and are coded similarly to the LXI instruction. The
instruction code for both these instructions is 00. The next two bits are the register pair field, which tells the
microprocessor which 16 bit register pair to increment or decrement. See TABLE 7.1, the table of 16 bit register pairs.
The last four bits are the instruction type and are used to further classify the instruction.

48

EXAMPLES 9.1

Here are two examples of how the syntax for INX rp and DCX rp opcodes are coded:

Example 1
To increment register pair B/C (INX B), the opcode would look like this in binary form:

Class B/C register code Type
00 00 0011

When converted to hexadecimal, the byte would look like this:

0000 0011
0 3

Example 2
To decrement the H/L register (DCX H), the opcode would look like this in binary form:

Class H/L register code Type
00 10 1011

Converted to Hexadecimal, the byte would look like this:

0011 1011
2 B

EXERCISE 9.0

1. Enter the program below into the trainer starting at address FF01.

 ADDRESS CONTENTS INSTRUCTION

FF01 01 LXI B,00FE
FF02 FE Low Data
FF03 00 High Data
FF04 3E MVI A,2
FF05 02 Data
FF06 16 MVI D,0FF
FF07 FF Data
FF08 03 INX B
FF09 3D DCR A
FF0A 14 INR D
FF0B 03 INX B
FF0C 3D DCR A
FF0D 14 INR D
FF0E 16 MVI D,00
FF0F 00 Data
FF10 03 INX B
FF11 3D DCR A
FF12 FF RST 7

49

2. Return the PC to address FF01 and trace the program execution a step at a time (single step). Fill in the
register contents and flag (Zero and Carry) contents in the spaces provided below.

INSTR. PC A B C D Zf Cf OPCODE MNEMONIC

0 FF01 00 00 00 00 0 0 01LXI B,00FE

1 ______ ____ ____ ____ ____ ____ ____ ____ _________

2 ______ ____ ____ ____ ____ ____ ____ ____ _________

3 ______ ____ ____ ____ ____ ____ ____ ____ _________

4 ______ ____ ____ ____ ____ ____ ____ ____ _________

5 ______ ____ ____ ____ ____ ____ ____ ____ _________

6 ______ ____ ____ ____ ____ ____ ____ ____ _________

7 ______ ____ ____ ____ ____ ____ ____ ____ _________

8 ______ ____ ____ ____ ____ ____ ____ ____ _________

9 ______ ____ ____ ____ ____ ____ ____ ____ _________

10 ______ ____ ____ ____ ____ ____ ____ ____ _________

11 ______ ____ ____ ____ ____ ____ ____ ____ _________

12 ______ ____ ____ ____ ____ ____ ____ ____ _________

3. Change the LXI B,00FE instruction to LXI B,0FEFF. Set a breakpoint at address FF0C and run the program
starting at address FF01. Examine the registers and flags after the break and fill in the blanks below.

PC A B C D Zf Cf OPCODE MNEMONIC

______ ____ ____ ____ ____ ____ ____ ____ ____________

4. Replace all the INR D instructions with INX D instructions in the above program. Run the program starting at
address FF01 with no breakpoints. Examine the registers and flags after the program executes and fill in the
blanks below.

PC A B C D Zf Cf OPCODE MNEMONIC

______ ____ ____ ____ ____ ____ ____ ____ ____________

50

QUESTIONS 9.0

1. If the A register was initialized to zero and then incremented (INR A) 512 times, what would be the contents
of the A register?

2. If the A register was initialized to zero and then decremented (DCR A) 512 times, what would be the contents
of the A register?

3. If the B/C register pair was initialized to zero and then decremented (DCX B) 512 times, what would be the
contents of the C register? What would be the contents of the B register?

4. Which of the instructions in the program of EXERCISE 9.0 affected the carry flag?

5. Which of the instructions in the program of EXERCISE 9.0 affected the zero flag?

6. Construct a two instruction program that uses the MVI instruction and a decrement instruction, to set the Zero
flag to one.

7. In question 9.0.6, what value would be present in the A register when the Zero flag becomes one.

8. If the A register contained zero and the Zero flag was one, what increment instruction would clear the Zero flag
to zero.

9. If the B register contained zero and the instruction MOV A,B was executed what flags would be affected.

10. Decode the following mnemonics to machine code.

INX SP ___________

DCR L ___________

51

LAB #10
PROGRAM LOOPING

INTRODUCTION

Frequently in programs it is desirable to execute a section of code a certain number of times. Rather than duplicate
this section of code over and over, a program loop can be implemented. In LAB #6 we used a loop to continually check
and output the DIP switch contents to the output LED's. The program of LAB #6 had no means of exiting the loop. A
loop with no exit is referred to as a infinite loop, because it will execute the same instructions forever. A conditional
loop, on the other hand, executes the instructions within the loop until the condition is met and then exits the loop. The
branch group of instructions allow both conditional and unconditional (infinite) looping.

In order to implement a conditional jump, the flag register must be utilized. Certain instructions within the arithmetic
group and logic group of instructions affect the flags. These instructions can then be utilized to make decisions on
whether the program should loop or fall through (exit) the loop. This lab introduces all of the conditional jump
instructions, but focuses on the jump instructions that reference the Zero flag.

REFERENCE

(Reference chapters/page numbers in Kleitz & Goankar texts)

OBJECTIVES

* To understand the concept of an unconditional jump.
* To understand the concept of a conditional jump.
* To be able to construct a delay loop.
* To be able to construct a program from a flowchart.
* To be able to exit a loop based on a comparison.
* To become familiar with the following instructions.

NOP opcode = 00

A special instruction that does no operation. The NOP instruction does not affect any
registers or flags. This instruction basically does nothing but occupy time and one
byte of memory space. This instruction is 1 byte in length.

Jccc <address> opcode depends on condition ccc

Jccc is the conditional jump instruction. ccc can be one of eight conditions
referencing four of the status flags. If the selected condition is true, then program
execution branches to the jump address <address>. If the condition is false then
execution continues at the next instruction following the jump instruction. This
instruction is 3 bytes in length.

CPI <data8> opcode = FE

Compare Immediate instruction. This instruction compares the byte following the
opcode with the A register (Subtracts byte2 of the insrtuction from the A register)
without changing the contents of the A register. This instruction only affects the flags.
The carry flag = 1 if A is less than <data8> else the carry flag = 0. The zero flag =
1 if A equals <data8> else the zero flag = 0. All flags (Z, S, P, CY, AC) are affected
by this instruction. This instruction is 2 bytes in length.

52

PROCEDURE

In this lab we analyze programs that utilize both the conditional and unconditional jump instructions. Refer back to lab
#6 if necessary in order to refresh your memory about using the JMP instruction. It is often useful in programs to delay
for a period of time before continuing. For example, a delay could be used in a burglar alarm to allow a person to shut
off the alarm after they have entered the house. The NOP instruction can be placed in a delay loop in order to lengthen
the delay, without affecting any flags or registers.

Using The Conditional Jump Instruction Jccc <address>

The conditional jump like the unconditional jump are 3 byte instructions. The first byte is the opcode, followed by the
low order address, and then the high order address. Branch type instructions like the jump instruction have their own
address modes,referred to as branch addressing modes. The 8085 microprocessor supports only one branch
addressing mode called absolute addressing. Absolute addressing means the branch instruction contains the complete
address of the jump. With absolute addressing we can jump anywhere we want within the 64K of memory space.

To code the Jccc <address> instruction, the first two most significant bits called the instruction code are both ones.
These two bits classify the class of instruction. The next three bits contain the 8 bit condition code that tells the
microprocessor on what condition to jump. The conditions are identified by their code in the following table:

TABLE 10.0 Conditions

ccc Condition

000 NZ not zero (Zf = 0)
001 Z zero (Zf = 1)
010 NC not carry (Cf = 0)
011 C carry (Cf = 1)
100 PO parity odd (Pf = 0)
101 PE parity even (Pf = 1)
110 P plus (Sf = 0)
111 M minus (Sf = 1)

The final three bits are coded 010. These bits are referred to as the instruction type and help further classify the
instruction.

EXAMPLES 10.0

Here are two examples of how the syntax for Jccc opcode is coded:

Example 1
To Jump Zero (JZ <address>), the opcode of the instruction would look like this in binary form:

Class Z condition code Type
11 001 010

When converted to hexadecimal, the byte would look like this:

1100 1010
C A

53

Example 2
To Jump Not Carry, the opcode of the instruction would look like this in binary form:

Class NC condition code Type
11 010 010

Converted to Hexadecimal, the byte would look like this:

1101 0010
D 2

Although the decoding of all the conditional jump instructions were presented, this lab will emphasize the JNZ and JZ
instructions. When using conditional jump instructions it important to realize that the flags are the basis of whether or
not the jump takes place. This provides a very useful function in that the condition flags remember the results of an
operation, allowing other instructions that do not modify the flags to execute before the conditional jump instruction is
encountered. If an instruction sets a particular flag and it is the basis of a decision (conditional jump), no other
instruction that modifies that particular flag should execute before the conditional jump, or the value of the flag may be
changed and cause an incorrect jump.

 As you can see from table 10.0, JNZ will occur when the result of an operation is Not Zero (Z=0) and JZ will occur
when the result of an operation is Zero (Z=1). The zero flag may seem a bit confusing because when it is 1, it
indicates an operation had a 0 result and when it is 0 it indicates a non-zero result. Just remember that a 1 indicates
"yes" and 0 indicates "no". So, for example, when a decrement operation results in zero this causes the zero flag to
be set to 1, signaling yes, the operation result was zero. If the operation did not result in zero, the zero flag would be
0 indicating no, the result was not zero.

EXERCISE 10.0

1. Enter the following delay loop program into memory starting at address FF01.

 ADDRESS CONTENTS INSTRUCTION

FF01 00 NOP
FF02 3E MVI A,02
FF03 02 Data
FF04 00 NOP
FF05 00 NOP
FF06 3D DCR A
FF07 C2 JNZ FF04
FF08 04 Address low
FF09 FF Address high
FF0A 3C INR A
FF0B FF RST 7

54

2. Return the PC to address FF01 and trace the program execution a step at a time (single step). Fill in the
register contents and Zero flag contents in the blanks below.

INSTR. PC A Zf OPCODE MNEMONIC
0 FF01 00 0 00 NOP

1 ______ ____ ____ ____ ____________

2 ______ ____ ____ ____ ____________

3 ______ ____ ____ ____ ____________

4 ______ ____ ____ ____ ____________

5 ______ ____ ____ ____ ____________

6 ______ ____ ____ ____ ____________

7 ______ ____ ____ ____ ____________

8 ______ ____ ____ ____ ____________

9 ______ ____ ____ ____ ____________

10 ______ ____ ____ ____ ____________

11 ______ ____ ____ ____ ____________

3. In the program of EXERCISE 10.0, how many iterations of the loop (times through the loop/number of jumps)
did the program execute.

4. If in the program of EXERCISE 10.0, the MVI A,02 instruction was changed MVI A,00 how many iterations of
the loop would be executed?

5. If in the program of EXERCISE 10.0, the JNZ FF04 instruction was changed to JNZ FF02 how many iterations
of the loop would take place?

6. If in the program of EXERCISE 10.0, the JNZ FF04 instruction was changed to JZ FF04 how many iterations
of the loop would be executed?

EXERCISE 10.1

In the program of EXERCISE 10.0, the delay is very short. The delay can be made longer by increasing the value of
the A register. However even with the maximum delay set, the microprocessor can execute the program almost
instantly. In order to get longer delays we can take advantage of a double loop. Enter the following double loop
program into memory.

55

 ADDRESS CONTENTS INSTRUCTION

FF01 01 LXI B,8000
FF02 00 Data low
FF03 80 Data high
FF04 0D DCR C
FF05 79 MOV A,C
FF06 00 NOP
FF07 00 NOP
FF08 C2 JNZ FF04
FF09 04 Address low
FF0A FF Address high
FF0B 05 DCR B
FF0C C2 JNZ FF04
FF0D 04 Address low
FF0E FF Address high
FF0F 00 NOP
FF10 FF RST 7

1. Run the above program starting at address FF01 with no breakpoints set. After the program finishes running
fill in the register and flag contents below.

PC A B C Zf Cf OPCODE MNEMONIC

______ ____ ____ ____ ____ ____ ____ ____________

2. Change the two NOP's at address FF06 and FF07 to an OUT 11 (two byte) instruction. Run the program full
speed and determine how many times the eight output LED's are all on at the same time. (Hint, do not try and
count the number of times the LED's are all on but try to calculate the value by determining the number of
iterations of the loops).

3. Construct a flowchart for the modified program of EXERCISE 10.1.2 .

56

FIG. 10.0

4. Change the contents of memory location FF03 from 80 to 00. Does the program now take a longer time or a
shorter time to execute?

5. Write an assembly language program and the corresponding machine code, that performs the actions of the
flowchart below.

57

FIG. 10.1

The program of EXERCISE 10.0 utilized a down counter loop in order to achieve a short delay. The CPI <data8>
instruction can be used to implement an up counter loop delay. Instead of using the DCR A instruction to set the Zero
flag when the A register is empty, the CPI <data8> instruction will be used to set the Zero flag when the contents of the
A register equals the value <data8> (second byte of the instruction). Figure 10.1 graphically describes how this
program operates.

EXERCISE 10.2

The assembly language program for the flowchart of figure 10.1 is listed below:

org FF01H
mvi a,0

loop: inr a
cpi 2
jnz loop
rst 7

58

1. For the assembly language program of EXERCISE 10.2 enter the corresponding machine language in the
space provided below.

ADDRESS CONTENTS INSTRUCTION

__________ ___________ _______________

__________ ___________ _______________

__________ ___________ _______________

__________ ___________ _______________

__________ ___________ _______________

__________ ___________ _______________

__________ ___________ _______________

__________ ___________ _______________

__________ ___________ _______________

2. Enter the machine language program of EXERCISE 10.2.1 into the trainer starting at address FF01.

3. Return the PC to address FF01 and trace the program execution a step at a time (single step). Fill in the
register contents and Zero flag contents in the blanks below.

INSTR. PC A Zf OPCODE MNEMONIC
0 FF01 00 0 3E MVI A,0

1 ______ ____ ____ ____ ____________

2 ______ ____ ____ ____ ____________

3 ______ ____ ____ ____ ____________

4 ______ ____ ____ ____ ____________

5 ______ ____ ____ ____ ____________

6 ______ ____ ____ ____ ____________

7 ______ ____ ____ ____ ____________

4. Modify the assembly language program given in EXERCISE 10.2 so that the program counts from 10 to 20
(10 interations of the loop). List the modified assembly language program below.

59

5. Construct a flowchart and provide the resulting assembly language program to loop indefinitely until all of the
DIP switches are in the ON position, whereby the loop exits and the output leds are subsequently all lit, and the
program ends. (Hint: Refer to EXAMPLE 4.0).

60

QUESTIONS 10.0

1. A loop that uses an unconditional jump and has no exit is referred to as an infinite loop; why is this so?

2. In order for the JZ instruction to jump the Zero flag must be at what state?

3. What flags, if any, affect the JMP instruction?

4. In the program of EXERCISE 10.1, if the DCR B instruction was replaced with the DCX B instruction, how
many times would the DCX B instruction get executed?

5. In the program of EXERCISE 10.1, if a breakpoint was set at address FF0B what value would be in the A
register when the break occurred? Assume the program starting address is FF01.

6. In the program of EXERCISE 10.0, if a DCR A instruction is placed at address FF04 in place of the NOP
instruction, how many iterations of the loop will take place?

7. In the program of EXERCISE 10.0, if a INR A instruction is placed at address FF04 in place of the NOP
instruction, how many iterations of the loop will take place?

8. If we wanted to exit a program loop when all the DIP switches are in the on position, explain how this could be
done using the IN, INR A, DCR A, and JNZ instructions. (Do not use the CPI <data8> instruction).

61

LAB #11
PUSHING, POPPING, AND THE STACK

INTRODUCTION

When writing programs for microprocessors in Assembler we frequently need to preserve the contents of a register or status
flag for later use. This can be accomplished by pushing the register or flags onto the stack. A value pushed on the stack can
later be removed by popping the value off into a selected register.

The stack is a First In Last Out (FILO) data structure. This is analogous to a stack of trays in a cafeteria, the last tray placed
on the stack is the first tray removed. The inserting and removing of values on/off the stack therefore must be carefully managed
by the programmer. Simply said, the stack occupies a predetermined chunk of memory that holds data temporarily until needed
and a data structure is an organized grouping of data.

REFERENCE

(Reference chapters/page numbers in Kleitz & Goankar texts)

OBJECTIVES

* To grasp the concept of the stack.

* To understand the concept of stack underflow and overflow.

* To understand the coding process for the push and pop instructions

* To understand the following instructions and their affect on the stack.

PUSH rp opcode depends on the operand

The PUSH rp instruction puts the 16 bit register pair rp on the stack. The Stack Pointer (SP) is
decremented by two. No flags are affected. Note the SP register is not a valid rp for this instruction.
This instruction is 1 byte in length.

PUSH PSW opcode = F5

The PUSH PSW instruction puts the 16 bit Program Status Word (PSW, A register and Flag
register) on the stack. The stack pointer (SP) is decremented by two. No flags are affected. This
instruction is 1 byte in length.

POP rp opcode depends on the operand

The POP rp instruction removes the 16 bit register pair rp off the stack. The Stack Pointer (SP) is
incremented by two. No flags are affected. Note the SP register is not a valid rp for this instruction.
This instruction is 1 byte in length.

POP PSW opcode = F1

The POP PSW instruction removes the 16 bit Program Status Word (PSW, A register and Flag
register) off the stack. The Stack Pointer (SP) is incremented by two. No flags are affected. This
instruction is 1 byte in length.

62

PROCEDURE

The 8085 microprocessor allows the selection of an area of memory to be deemed the stack. The key element of the stack
is the Stack Pointer (SP) register located in the 8085 microprocessor. The SP always points to the Top Of Stack, that is the
memory address of the last value placed on the stack. Each stack element is a 16 bit value, and as such requires two memory
locations to hold the value. The low order byte is stored in the lower memory address and the high order byte is stored in the
higher memory address. When a value is to be pushed on the stack, the SP is first decremented by two so as to not overwrite
the last value placed on the stack. This new value is now the new Top of Stack. When a value is to be popped off the stack,
the value is first removed into the selected register pair and then the SP is incremented by two to the next value on the stack
making it the Top Of Stack. When all values have been removed the stack is said to be Balanced or Empty.

Since every time a value is placed on the stack the SP is decremented by two, the SP is generally initialized to a memory
location high up in memory where it has room to grow. If too many values are placed on the stack without removal, the stack
can overwrite program code and crash the program. This is known as Stack Overflow. Likewise removing a value from an
empty stack is called Stack Underflow. When Stack Underflow occurs, the value popped off the stack is undefined (no value
was ever placed on the stack in the first place) and therefore a mistake has been made that will generally cause the program
to crash also. Stack Underflow can occur when there are more pops executed than pushes.

The initialization of the SP determines the starting point for the Top Of Stack. The SP is can be initialized using the LXI SP
instruction. When using the PRIMER however the SP has already been initialized by MOS to memory address FFD4H, no
further initialization is required.

Using the PUSH & POP Instructions

The PUSH instruction places the PSW or a register pair on the Top Of Stack pointed to by the SP plus two and the POP
instruction removes the PSW or a register pair from the Top Of Stack pointed to by the SP. To determine if the PSW or a
register pair will be used we must specify our choice in the operand. Lets look at how the instruction is coded to specify an
operand. The first two bits as seen in previous labs is the instruction class. The instruction class for the PUSH and POP
instructions is 11. The next two bits contain the register pair code that tells the microprocessor which register pair or if the PSW
is the operand for the instruction. The valid operands are identified by their code in the following table:

TABLE 11.0 16 Bit Registers

Bits Register Pair Name

00 B --> IMPLIES B/C
01 D --> IMPLIES D/E
10 H --> IMPLIES H/L
11 PSW-> PROGRAM STATUS WORD

(SINCE THE SP IS AN INVALID CHOICE)

The final four bits (instruction type) determines which stack instruction (PUSH or POP) we are using and help further classify
the instruction. The table below identifies the stack instructions and there types:

TABLE 11.1 STACK INSTRUCTION TYPES

Instruction Type

PUSH 0101
POP 0001

63

EXAMPLES 11.0

Here are two examples of how the syntax for the PUSH instruction is coded:

Example 1

To push the H/L register pair, the opcode would look like this in binary form:

Class H/L register code Type
11 10 0101

When converted to hexadecimal, the byte would look like this:

1110 0101
E 5

Example 2

To push the PSW, the opcode would look like this in binary form:

Class PSW code Type
11 11 0101

When converted to hexadecimal, the byte would look like this:

1111 0101
F 5

EXAMPLE 11.1

Here are two examples of how the syntax for the PUSH instruction is coded:

Example 1

To pop the B/C register pair, the opcode would look like this in binary form:

Class B/C register code Type
11 00 0001

When converted to hexadecimal, the byte would look like this:

1100 0101
C 1

Example 2

To pop the PSW, the opcode would look like this in binary form:

Class PSW code Type
11 11 0001

When converted to hexadecimal, the byte would look like this:

1111 0001
F 5

EXERCISE 11.0

1. Enter the following program into memory starting at address FF01H.

64

ADDRESS CONTENTS INSTRUCTION
FF01 01 LXI B,1234H
FF02 34 Low Data
FF03 12 High Data
FF04 C5 PUSH B
FF05 D1 POP D
FF06 FF RST 7

2. Return the PC to address FF01H and trace the program execution a step at a time (single step). Fill in the register
contents and Top Of Stack (TOS) contents in the blanks below. To view the 16 bit value (TOS), use the S.C. (Stack
Contents) function key on the PRIMER..

INSTR. P.C. B.C. D.E. S.P. S.C. OPCODE MNEMONIC

0 FF01 0000 0000 FFD4 ???? 01 LXI B,1234H

1 ______ ______ ______ ______ ______ ______ __________

2 ______ ______ ______ ______ ______ ______ __________

3 ______ ______ ______ ______ ______ ______ __________

The above program simulates a 16 bit move (copy) instruction. Using the stack it PUSHes the B/C register pair on the stack
and POPs it off into the D/E register pair, thus moving the contents of B/C to D/E.

3. What was the maximum stack space in bytes used by the program of Exercise 11.0?

4. Modify the program of Exercise 11.0 to move the D/E register pair to the H/L register and list the new program below.

5. Modify the program of Exercise 11.0 as follows:

ADDRESS CONTENTS INSTRUCTION
FF01 01 LXI B,1234H
FF02 34 Low Data
FF03 12 High Data
FF04 C5 POP B
FF05 D1 PUSH B
FF06 FF RST 7

A. Does stack overflow occur in this program?

B. Does stack underflow occur in this program?

C. At the end of the execution of this modified program, what is the stack condition (underflow, overflow, or
balanced)?

65

EXERCISE 11.1

1. Enter the following program into memory starting at address FF01H.

ADDRESS CONTENTS INSTRUCTION
FF01 11 LXI D,1234H
FF02 34 Low Data
FF03 12 High Data
FF04 21 LXI H,5678H
FF05 78 Low Data
FF06 56 High Data
FF07 D5 PUSH D
FF08 E5 PUSH H
FF09 D1 POP D
FF0A E1 POP H
FF0B FF RST 7

2. Return the PC to address FF01H and trace the program execution a step at a time (single step). Fill in the register
contents and Top Of Stack (S.C.) contents in the blanks below.

INSTR. P.C. B.C. D.E. S.P. S.C. OPCODE MNEMONIC

0 FF01 0000 0000 FFD4 ???? 11 LXI D,1234H

1 ______ ______ ______ ______ ______ ______ __________

2 ______ ______ ______ ______ ______ ______ __________

3 ______ ______ ______ ______ ______ ______ __________

4 ______ ______ ______ ______ ______ ______ __________

5 ______ ______ ______ ______ ______ ______ __________

6 ______ ______ ______ ______ ______ ______ __________

3. What single 8085 instruction does the program of Exercise 11.1 perform?

4. What was the maximum stack space in bytes used by the program of Exercise 11.1?

5. What is the maximum stack space available for the program of Exercise 11.1 before stack overflow occurs?

6. Modify the program of Exercise 11.1 as follows:

ADDRESS CONTENTS INSTRUCTION
FF01 11 LXI D,1234H
FF02 34 Low Data
FF03 12 High Data
FF04 D5 PUSH D
FF05 11 LXI D,5678H
FF06 78 Low Data
FF07 56 High Data
FF08 D5 PUSH D
FF09 E1 POP H
FF0A D1 POP D
FF0B FF RST 7

66

7. Run the modified program starting at address FF01H and fill in the blanks below:

P.C. D.E. H.L. S.P. S.C. OPCODE MNEMONIC

FF0B _______ _______ _______ _______ ________ ___________

QUESTIONS 11.0

1. A ________________ is an organized grouping of data.

2. Stack _______________ occurs when the stack grows to large and overwrites program code.

3. Stack _______________ occurs when a value is popped off an empty stack.

4. An empty stack is also referred to as a ____________ stack.

5. A stack is a __________________ data structure.

6. Each stack element consists of ______ bits.

7. If the status flags and all the registers were to be saved on the stack how many bytes of stack space would be
required?

8. Referring to the program of Exercise 11.1, if the instruction at address FF0BH were changed from RST 7 to JMP
FF01H would stack overflow occur?

67

9. Fill in the blanks below to POP off the registers to their original register values prior to the PUSH instructions.

PUSH PSW
PUSH B
PUSH H
PUSH D

POP _____

POP _____

POP _____

POP _____

10. After the following instructions were executed what would be the contents of the A register.

LXI H,0ABCDH
PUSH H
POP PSW

11. After the following instructions were executed what would be the condition of the stack for each of the following?
Answer both A. And B. (Balanced, Overflow, Underflow)

A. PUSH PSW B. LOOP PUSH PSW
LOOP PUSH B PUSH B

PUSH D POP B
POP B PUSH H
POP H POP PSW
POP PSW JMP LOOP
JMP LOOP

68

LAB #12
SUBROUTINES AND SERVICES

INTRODUCTION

A subroutine is a self contained module which performs a specific function that is accessible from any part of a program. This
self contained module can be thought of as a mini program in its own right, and as such, can usually be written and tested
independently of the rest of the program. This also allows multiple programmers to work independently on a program at the
same time, each writing subroutines that will contribute to the program as a whole.

Once these subroutines have been written and tested, they become building blocks that can be bolted together to construct
the program, similar to the way the blocks of a flow chart are connected to provide a graphical representation of a program.
If the subroutines are error free, then it can be a relatively simple job to connect them together. This is an efficient way of writing
programs and reduces the debug time significantly. Since each subroutine is being debugged independently debugging is
much easier.

The first instruction executed in a program is considered to be in the Main program. The Main program begins and ends the
program as a whole. Typically between the beginning and the end of the Main program are subroutine Calls. Therefore the Main
program is very easy to understand as it primarily consists of subroutines with the names of the subroutines describing what
the subroutines functions are. For example COSINE might be the name of a subroutine used to find the cosine of a number.

If I wrote a subroutine called ADDNUM that added two numbers together, I would input to the subroutine the two numbers I
wanted to add and the subroutine would output the sum. These values that are passed into and out of the subroutine are called
parameters. Not all subroutines require parameters, but most do. Parameters are usually passed to subroutines in registers.
For example with the ADDNUM subroutine, I could specify that the first number to added be placed in the B/C register pair,
the other number be placed in the D/E register pair, and the sum be returned in the H/L register pair. To test this subroutine
is very simple, I give it two numbers and look in the H/L register pair to see if the result is correct. Once the subroutine has been
tested, it can be CALLed many times from any point in the program. As a matter of fact it can even be used in other programs
that may require adding two numbers.

After a period of time writing programs, you will acquire quite a collection of subroutines that can be utilized in writing new
programs. This collection of subroutines is referred to as a library. Subroutines that are to be stored in a library should be
written generic in nature, like the ADDNUM subroutine. If we had written ADDNUM so that it always added ten to another
number, then this subroutine becomes specific and is of little use in a library.

A subroutine can be CALLed from within another subroutine. This is referred to as nesting a subroutine and the subroutine that
is CALLed is referred to as a nested subroutine. If for example we were to write a subroutine called AVERAGE to find the
average of several numbers, we could CALL ADDNUM from within AVERAGE to generate a total. And then possibly CALL
another subroutine called DIVIDE also from within AVERAGE to finish the computation of the average.

Operating Systems frequently provide subroutines that allow programmers to be more productive. For example when
programming under MS/DOS, if a programmer needs to get a key from the keyboard or display a sentence on the video
monitor, a predefined subroutine that is part of DOS is used to do this. These predefined subroutines are called services.
Services are available on virtually every operating system and MOS (Monitor Operating System) is no exception. MOS has
a complete set of services allowing easy access to all of the UT’s I/O devices.

REFERENCE

(Reference chapters/page numbers in Kleitz & Goankar texts)

OBJECTIVES

* To understand the benefit of using subroutines and their correct usage.

* To understand subroutines and their affect on the stack.

* To understand MOS services and their usage.

* To become familiar with the following 8085 instructions.

69

CALL <address> opcode = CD

Put the address of the next instruction following the CALL instruction on the stack. Then
load the program counter (PC) with the address contained in the two bytes following the
instruction. The first byte following the opcode is the least significant byte of the address,
the second byte is the most significant byte of the address. No flags affected. This
instruction is 3 bytes in length.

RET opcode = C9

Remove a 16 bit value from the top of the stack and load it into the program counter (PC).
No flags affected. This instruction is 1 byte in length.

PROCEDURE

A subroutine is a powerful feature available in both high and low level programming languages. It is sometimes also referred
to as a procedure or a function depending on the language. A subroutine should have one entry point at the beginning of the
subroutine and one exit point at the end of the subroutine. Every 8085 subroutine should end with the RETurn statement, which
exits the subroutine and RETurns back to the instruction following the invoking CALL instruction. Always RETurn from a
subroutine, never JMP out of a subroutine.

A subroutine can be called from many different places within a program. Each time the subroutine is invoked a CALL
instruction must be used, never JMP into a subroutine. A subroutine can call another subroutine and that subroutine can call
another and so forth. The limiting factor for how deep subroutines can be nested is the available stack size. Subroutines are
placed sequentially after the end of the Main program.

EXAMPLE 12.0

; EXAMPLE PROGRAM TO DEMONSTRATE SUBROUTINES
;
START EQU FF01H
LEDS EQU 11H

ORG START
MAIN MVI A,0
LOOP CALL NOTA ; CALL SUB TO OUTPUT A NOT

INR A
CPI 3 ; QUIT AFTER THREE ITERATIONS
JNZ LOOP
RST 7 ; END MAIN

;
; THIS SUBROUTINE COMPLEMENTS AND OUTPUTS THE A REG.
;
; INPUT PARAMETERS: A REG.
; OUTPUT PARAMETERS: NONE
;
; ALL REGISTERS PRESERVED
;
NOTA PUSH PSW ; PRESERVE A REG

CMA
OUT LEDS ; OUTPUT A NOT
POP PSW ; RESTORE A REG
RET
END ; END PROGRAM

In Example 12.0 above a description of the program comes first, followed by the EQUates, the Main, and then the subroutine.
The END statement is a assembler directive to tell the assembler there is no more code to assemble. The Main program ends
with the RST 7 instruction which stops executions of the program. When execution stops the stack should be empty.

70

Most Subroutines require parameters that are passed via the registers and our example is no exception. The A register is used
to pass an input parameter to the subroutine NOTA. The subroutine PUSHes this value on the stack to preserve its original
value. The subroutine then compliments the A register and outputs it to the LEDs. Once the complemented A register has been
output, the original value of A is POPed off the stack and the A register is restored. The subroutine then RETurns to the
instruction following the CALL (INR A). The subroutine will be called three times due to the conditional loop in the Main program.

EXERCISE 12.0

1. Enter the machine code of Example 12.0 into the trainer starting at address FF01H.

ADDRESS CONTENTS INSTRUCTION

FF01 3E MVI A,0
FF02 00 Data
FF03 CD CALL FF0DH
FF04 0D Address Low
FF05 FF Address High
FF06 3C INR A
FF07 FE CPI 3
FF08 03 Data
FF09 C2 JNZ FF03H
FF0A 03 Address Low
FF0B FF Address High
FF0C FF RST 7
FF0D F5 PUSH PSW
FF0E 2F CMA
FF0F D3 OUT 11H
FF10 11 I/O Address
FF11 F1 POP PSW
FF12 C9 RET

2. Return the PC to address FF01H and trace the program execution a step at a time (single step). Fill in the register
contents and Top Of Stack (S.C.) contents in the blanks below.

71

INSTR. P.C. A S.P. S.C. OPCODE MNEMONIC

0 FF01 00 FFD4 ???? 3E MVI A,0

1 ______ ______ ______ ______ ______ __________

2 ______ ______ ______ ______ ______ __________

3 ______ ______ ______ ______ ______ __________

4 ______ ______ ______ ______ ______ __________

5 ______ ______ ______ ______ ______ __________

6 ______ ______ ______ ______ ______ __________

7 ______ ______ ______ ______ ______ __________

8 ______ ______ ______ ______ ______ __________

9 ______ ______ ______ ______ ______ __________

10 ______ ______ ______ ______ ______ __________

11 ______ ______ ______ ______ ______ __________

12 ______ ______ ______ ______ ______ __________

13 ______ ______ ______ ______ ______ __________

14 ______ ______ ______ ______ ______ __________

15 ______ ______ ______ ______ ______ __________

16 ______ ______ ______ ______ ______ __________

17 ______ ______ ______ ______ ______ __________

18 ______ ______ ______ ______ ______ __________

19 ______ ______ ______ ______ ______ __________

2. Run the program full speed from the address you left off at in Exercise 12.0.1. Examine the registers and S.C. and
fill in the blanks below.

P.C. A S.P. S.C. OPCODE MNEMONIC

______ ______ ______ ______ ______ __________

3. What was the maximum stack space used by the program of Exercise 12.0.

4. Replace the PUSH PSW instruction with the NOP instruction. Step the program seven instruction starting at address
FF01H.

A. Does the subroutine return to the same address as in Exercise 12.0.1?

B. After the seventh instruction, what is the stack condition (underflow, overflow, or balanced?

72

The program of Example 12.0 demonstrates how a subroutine can be utilized, however if the program is run at full speed it is
impossible to see the LEDs change state. The program of Exercise 12.1 solves this problem by adding a DELAY subroutine.
This subroutine is called after each output to the LEDs, assuring that each state can be seen. The DELAY subroutine is called
from within the SUB subroutine, making it a nested subroutine. Note that the DELAY subroutine is also called from within the
Main Program.

EXERCISE 12.1

1. Hand assemble the following assembly language program into machine language in the space provided below.

; EXAMPLE PROGRAM TO DEMONSTRATE NESTED SUBROUTINES
;
START EQU FF01H
LEDS EQU 11H

ORG START
MAIN MVI A,0
LOOP CALL NOTA ; OUTPUT A NOT

INR A
CPI 3 ; QUIT AFTER THREE -
JNZ LOOP ; ITERATIONS
CALL DELAY ; DELAY BEFORE EXIT
MVI A,0 ; ZERO OUT LEDS
OUT LEDS
RST 7 ; END MAIN

;
; THIS SUBROUTINE COMPLEMENTS AND OUTPUTS THE A REG.
;
; INPUT PARAMETERS: A REG.
; OUTPUT PARAMETERS: NONE
;
; ALL REGISTERS PRESERVED
;
NOTA PUSH PSW ; PRESERVE A REG

CMA
OUT LEDS ; OUTPUT A NOT
CALL DELAY ; CALL SUB TO DELAY
POP PSW ; RESTORE A REG
RET

;
; THIS SUBROUTINE EXECUTES A 16 BIT DELAY
;
; INPUT PARAMETERS: NONE
; OUTPUT PARAMETERS: NONE
;
; ALL REGISTERS PRESERVED
;
DELAY PUSH PSW ; PRESERVE REGISTERS

PUSH H
LXI H,0C000H ; LOAD DELAY FACTOR

LOOP1 DCR L
MOV A,L
JNZ LOOP1 ; IS LOW ORDER 0
DCR H
JNZ LOOP1 ; IS HIGH ORDER 0
POP H
POP PSW ; RESTORE REGISTERS
RET

END ; END PROGRAM

73

ADDRESS CONTENTS INSTRUCTION

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

74

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

____________ __________ ________________

2. Run the program full speed from address FF01H. Examine the registers and S.C. and fill in the blanks below.

P.C. A H.L. S.P. S.C. OPCODE MNEMONIC

______ ______ ______ ______ ______ ______ __________

3. What was the maximum stack space used by the program of Exercise 12.1.

4. If the instruction CALL DELAY was placed somewhere in the DELAY subroutine, what stack condition would take
place when the program was executed? (Balanced, Underflow, Overflow)

5. If the instruction CALL NOTA was replaced with JMP NOTA, what stack condition would take place when the program
was executed? (Balanced, Underflow, Overflow)

USING SERVICES

As previously mentioned MOS has a set of predefined subroutines that we can make use of in our own programs. These
service subroutines make it easy to add sophisticated functionality to a user program. Rather then have to remember a different
address for each service subroutine, MOS uses one address and a parameter passed in the C register (service number) to
indicate which subroutine should be invoked. The address used to access all MOS services is 1000H. When single stepping
through a MOS Service Call, the processor will run full speed through the service and automatically break at the address
following the CALL. All registers used by a service routine that do not return a value are preserved. For services that display
information on the 6, 7 segment numeric LED’s, the information will be lost upon termination of the program (Execution of the
RST 7 instruction). A list of services and their descriptions can be found in Appendix D.

EXERCISE 12.2

1. Enter the following program into the trainer at starting at address FF01H.

ADDRESS CONTENTS INSTRUCTION
FF01 CD CALL 1000H
FF02 00 Low Address
FF03 10 High Address
FF04 FF RST 7

2. Reset the PRIMER by pressing the RESET button.

3. Run the program full speed.

4. Describe what happens when this program is running.

5. Reset the PRIMER by pressing the RESET button.

6. Change (spoon feed, see Lab #5) the contents of the C register to 0CH and the contents of the E register to 96H and
run the program full speed. Be careful not to reset the PRIMER after spoon feeding the registers.

7. Record the contents of the 8 Digital Out Status LEDs in the spaces provided below (1=on/0=off).

Left ____ ____ ____ ____ ____ ____ ____ ____ Right

75

EXERCISE 12.3

1. Enter the following program into the trainer at starting at address FF01H.

ADDRESS CONTENTS INSTRUCTION
FF01 0E MVI C,12H
FF02 12 Service Number
FF03 11 LXI D,1F95H
FF04 95 Low Data

 FF05 1F High Data
FF06 CD CALL 1000H
FF07 00 Low Address
FF08 10 High Address
FF09 DB IN 12H
FF0A 12 I/O Address
FF0B FE CPI 00
FF0C FE Data
FF0D C2 JNZ FF01H
FF0E 01 Low Address
FF0F FF High Address
FF10 FF RST 7

2. Position all 8 switches of dipswitch S1 to the off position.

3. Return the PC to address FF01H and run the program full speed.

4. Record the contents of the 6 numeric 7 segment LED displays in the spaces provided below.

_______ _______ _______ _______ _______ _______

5. Position dipswitch, switch #1 to the on position.

6. Record the contents of the 6 numeric 7 segment LED displays in the spaces provided below.

_______ _______ _______ _______ _______ _______

7. Change the contents of address FF02H from12H to 13H.

8. Position all 8 switches of dipswitch to the off position.

9. Return the PC to address FF01H and run the program full speed.

10. Record the contents of the 6 numeric 7 segment LED displays in the spaces provided below.

_______ _______ _______ _______ _______ _______

11. Stop execution of the program by pressing the RESET button.

12. Change the contents of address FF02H from 13H to 11H, the contents of address FF04 from 95H to 47H, and the
contents of address FF05H from 1FH to 00.

13. Return the PC to address FF01H and run the program full speed.

14. Record the contents of the 6 numeric 7 segment LED displays in the spaces provided below.

_______ _______ _______ _______ _______ _______

15. Stop execution of the program by pressing the RST (Reset) button.

76

QUESTIONS 12.0

1. A ________________ is a self contained module which performs a function accessible from different parts of a
program.

2. Values passed to and from a subroutine are referred to as ____________________.

3 A collection of subroutines that are designed to be reused is called a ___________________.

4. A subroutine that is called from within a subroutine is a ___________________ subroutine.

5. Predefined subroutines accessible through an operating system are called _________________.

6. A subroutine should have one __________________ at it’s beginning, and one __________________ at the
subroutines end.

7. A subroutine is always invoked by the _______________ instruction and should never be jumped into.

8. Always use the ______________ instruction to exit a subroutine, never jump out of a subroutine.

9. After the following instructions were executed what would be the condition of the stack (Balanced, Overflow,
Underflow).

SUB NOP
CALL SUB
RET

10. List the Service names of the two services used in Exercise 12.2. Refer to Appendix D for Service detail descriptions.

11. List the Service names of the three services used in Exercise 12.3. Refer to Appendix D for Service detail
descriptions.

12. Write an 8085 assembly language program (not machine language) using the MOS services that displays on the 7
segment numeric LEDs the current value of the dipswitch indefinitely (infinite loop) until reset. Use service A to read
the dipswitch and service 12 to output the dipswitch value to the LEDs.

77

LAB #13
USING THE ENHANCED MONITOR OPERATING SYSTEM (EMOS)

INTRODUCTION

This lab assumes the user has the EMOS EPROM and an upgrade option installed on the board, and that the user has
established communication between the board and the Terminal/PC, as outlined in the EMOS manual.

The Monitor Operating System (MOS) is a powerful software program that provides the user with the tools to enter and
edit programs as well as run, test, and debug machine language programs. When the trainer is first turned on,
interaction between the Monitor Operating System and the user is through the on-board keypad and display. This mode
of operation is referred to as the Keypad/Display mode and was presented in LAB #5. The most productive way to use
the PRIMER, however, is through EMOS in which all interaction is through a Terminal/PC. This mode obviously allows
more information to be exchanged easier than with the keypad display mode. Additional functions/commands are
available through the Terminal/PC mode that are not possible with the Keypad/Display mode.

OBJECTIVES

* Know how to invoke EMOS
* Know the advantages and disadvantages of using EMOS vs. MOS
* View and change the contents of memory using EMOS.
* View and change the register contents using EMOS.
* Fill and Dump memory using EMOS.
* Run a program using EMOS.

PROCEDURE

When the PRIMER is properly connected to the Terminal/PC, invoke EMOS from MOS by pressing "Func" then the "0"
key. The LEDs will display "Func 00" and the Terminal/PC should now display the following menu:

EMOS Vx.xx HELP MENU

B --> Bring Block from RAMDISK to Memory
C --> Change register contents
D --> Dump memory contents
E --> Edit memory contents
F --> Fill memory with byte
G --> Go execute program { full speed }
H --> Hex/Decimal math {1st + 2nd, 1st - 2nd}
I --> Input from I/O port
L --> List memory contents using mnemonics
M --> Move section of memory
O --> Output to I/O port
R --> display Register contents
S --> MOS Service call
T --> Trace program execution
W --> Write memory to RAMDISK
< --> hex download from trainer to host
> --> hex upload to trainer from host
? --> display this help menu

If the menu is not displayed type "?" and the menu should appear. The above Help Menu can be displayed at any time
from the EMOS minus "-" prompt by typing a "?".

78

Each of the EMOS commands are invoked by typing a single character at the EMOS prompt. EMOS will prompt the
user for any necessary command input and checks the input to be sure it is of the proper form. When an "ADDRESS"
is requested, a number of up to 4 HEX digits should be entered. When a "BLOCK" is requested, a number of up to
3 DEC (decimal) digits should be entered. The <ESC> key or bad input will abort the issued command and cause a
"?" to be displayed. A complete description of all the EMOS commands is given in the EMOS Manual. Several of these
commands and their descriptions are covered in detail in this lab.

VIEWING AND CHANGING MEMORY CONTENTS

Using The Dump Command

The "D" command shows memory across the screen in Hex and ASCII both. ASCII stands for the American Standard
Code for Information Interchange. The ASCII codes 00 through 7F in hex define control and printable characters.
Each character has a unique ASCII code that references that character. For instance 31 Hex is the ASCII code for
the character "1". If you send the value 31 Hex to most printers, they would print a one. Below is an example of an
arbitrary Dump of memory.

 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
 8F01 30 31 0D 0A 41 42 C3 FF 61 62 23 24 2A 20 00 3F 01 AB..ab#$* ?

In this example 8F01 is the starting address of the Dump line. Sixteen memory locations starting at 8F01 through 8F10
are displayed in Hexidecimal form, followed by the same sixteen addresses displayed in ASCII form. ASCII control
codes such as carriage return (0Dh) and line feed (0Ah) display a space character. Memory values above 7F display
a period. All other values display their ASCII character representation. This standard dump format is featured on most
microprocessor development systems. It is very useful for displaying a whole block of memory that may contain data,
variables, or ASCII strings.

Steps for Dumping Memory

1. Type the letter "D" at the minus prompt.
2. Enter the desired starting address in Hex. If the address is less than four digits press the <ENTER> key.
3. Enter the number of bytes from 1 to FFF in Hex. A minimum of 16 bytes is always displayed. Pressing any

key will pause the display. Pressing the <ESC> key at this time will abort the Dump command or any other
key will continue.

4. After completion of the Dump command the minus prompt will be displayed, indicating EMOS is ready for
another command.

Using The Edit Command

The "E" command displays memory a byte at a time with its associated address and allows the contents of the location
to be optionally changed. Press the <ENTER> key to view the next sequential address' memory contents without
changing the contents of the preceding memory location. Typing a byte value in Hex (00 - FF) will replace the contents
of the currently displayed address with the Hex value typed. Typing a minus sign followed by a single Hex digit (0 - F)
will subtract the value of the digit from the current address, allowing you to back up, up to 15 memory locations.
Pressing the <ESC> key at any time will return you to the EMOS minus prompt. The Edit command is particularly
useful for entering and editing programs.

79

Steps for Editing Memory

1. Type the letter "E" at the minus prompt.
2. Enter the desired starting address in Hex. If the address is less than four digits press the <ENTER> key after

typing the digits.
3. Change the contents of each memory location as required. To change the memory contents, type up to two

Hex digits.
4. After you finish Editing the memory contents, press the <ESC> key to return to the EMOS minus prompt.

Using The Fill Command

The "F" command is used to Fill a section of memory with a particular byte. This command comes in handy for
determining what memory locations are being altered or accessed. This is done by filling the suspect memory section
with a known byte. After executing a program the suspect memory section is Dumped to see which locations have
changed. The Fill command requires a starting address, the number of bytes (memory locations) to Fill, and the byte
with which to Fill the memory locations. This command will obviously have no effect when trying to Fill EPROM
locations.

Steps For Filling Memory

1. Type the letter "F" at the minus prompt.
2. Enter the desired starting address in Hex. If the address is less than four digits press the <ENTER> key.
3. Enter the number of bytes from 1 to FFF in Hex. If the address is less than four digits press the <ENTER> key

after typing the digits.
4. Enter the Fill byte (0 - FF).
5. After completion of the FILL command the minus prompt will be diplayed, indicating EMOS is ready for another

command.

Using The List Command

The "L" command disassembles the memory contents, displaying the memory contents as 8085 mnemonics with their
associated addresses. This command is very useful in verifying the instructions you entered using the Edit command.
The List command requires a starting address. This address must be that of an opcode. If the address of an operand
or data is given, the list command will assume this address contains an opcode and will disassemble it and the contents
of subsequent memory locations, giving misleading results. The List command will disassemble sixteen 8085
instructions and will pause. Pressing the <ESC> key will return you to the minus prompt. Pressing any other key will
continue the disassembling process. If an invalid (not defined) opcode is encountered, three question marks are
displayed. The availability of the List command is one of the benifits to using EMOS in place of MOS.

Steps For Listing Memory

1. Type the letter "L" at the minus prompt.
2. Enter the desired starting address in Hex. If the address is less than four digits press the <ENTER> key after

typing the digits.
3. Press any key to continue disassembling, or press the Escape key to return to the EMOS minus prompt.

80

LOADING A PROGRAM INTO MEMORY

In Lab #5 we loaded a program into memory using MOS. In this lab we will load the same program using EMOS. The
program is as follows:

ADDRESS DATA INSTRUCTION
8F01 DB IN 12
8F02 12
8F03 D3 OUT 11
8F04 11
8F05 C3 JMP 8F01
8F06 01
8F07 8F

Use the following steps to enter the above program using EMOS.

1. Use the "F" command to fill 16 memory locations, starting at address 8F01, with 0. This step is not mandatory
in loading a program, but makes later verification of the program easier.

2. Type "E" to invoke the Edit command and specify a starting address of 8FO1.
3. At address 8FO1 enter the Hex value DB from the first line of the above program.
4. Continue entering the Data Instructions in their respective addresses.
5. Press the <ESC> key to return to the EMOS minus prompt.
6. Use the "L" command to list the contents of memory starting at memory address 8F01.
7. Verify that each memory location contains the correct value (compare instructions and operands). If a mistake

is found repeat from step #1.

VIEWING AND CHANGING REGISTER CONTENTS

Viewing the register contents with MOS required that each register be viewed independently. EMOS offers the luxury
of viewing not only all the registers, but the top of stack and the memory contents pointed to by the PC with its
associated mnemonic, all at the same time. EMOS displays each flag of the flag register individually so the user doesn't
need to decode a hex flag value into binary to see which flags are set or clear. EMOS is a more efficient and robust
training environment than is MOS.

When using MOS to change register contents, each change affected a register pair. With EMOS each 8 bit register
is changed and displayed individually and not as a register pair.

Using The Register Command

The "R" command displays the flags, all the registers, the contents of the top of stack, and the contents of memory
pointed to by the PC with its associated mnemonic. Each flag is given an individual bit, making it easy to see individual
flag status. All 8 bit registers are displayed individually and not as register pairs. The data in memory pointed to by
the PC is displayed and referred to as an OPCODE. The memory contents is referred to as opcode because it is
assumed that any location the PC points to should contain an opcode, even though it may contain an operand or data.
The format for displaying the registers in EMOS is shown below.

SZxAxPxC A B C D E H L TS SP PC OPCODE MNEMONIC
00000000 00 00 00 00 00 00 00 0000 0000 0000 00 NOP

The flags read from the left are: S Sign flag
Z Zero flag
x Undefined
A Auxiliary Carry flag
x Undefined
P Parity flag
x Undefined
C Carry flag

81

The 8 bit registers from the left are: A Accumulator register
B B general purpose register
C C general purpose register
D D general purpose register
E E general purpose register
H H general purpose register
L L general purpose register

The 16 bit memory value: TS Top of Stack contents

The 16 bit registers from the left: SP Stack Pointer register
PC Program Counter register

The 8 bit memory value: OPCODE Value pointed to by PC
MNEMONIC Instruction Abbreviation

To display the registers, simply type the letter "R" at the EMOS minus prompt.

Using The Change Command

The "C" command allows the modification of the flags, registers, the top of stack, and the memory location pointed to
by the PC. Each register can be individually changed with EMOS unlike with MOS. Flags, although individually
displayed, must be changed as a Hex 8 bit value. The Change command first prints the current register contents, and
then prompts the user with the following:

SELECT REG. [F, A, B, C, D, H, L, T, S, P, O]..

Select "F" to change the flags, "A" - "L" to change the 8 bit registers, "T" for the top of stack, "S" for the stack pointer,
and "O" to change the memory contents pointed to by the PC. After entering one of the above letters, the user is then
prompted for the new hex value for the selected register/memory location. Remember TS, SP, and PC all contain 16
bit values and all other selections contain 8 bit values. The Change command will display the register contents again
for verification, after the change has been made and before returning to the EMOS minus prompt.

RUNNING A PROGRAM

To run a program using EMOS, the Go command is used. Using the Go command, the user can enter an optional
starting address and/or optional breakpoint address. Then when the Go command prompts for the starting address and
the <ENTER> key is pressed without typing a number, execution will start at the current PC value. The steps required
to run a program are listed below.

1. Type the letter "G" to invoke the Go command.
2. Enter the starting address (in hex) of the instruction to be executed. If the address is less than four digits press

the <ENTER> key after typing the digits.
3. At this time EMOS will prompt you for a breakpoint address. If a breakpoint address is not required, just press

the <ENTER> key. (Breakpoints are not discussed in this lab).
4. The Terminal/PC will indicate that the program is running. To stop execution of the program and return to the

EMOS minus prompt, press a key at the Terminal/PC.

Verify that the program entered in the LOADING A PROGRAM section, located at address 8F01 is still intact. If not,
reenter the program. To execute the program use the Go command selecting the starting address of 8F01 with no
breakpoint as mentioned above. The Terminal/PC will show the message "RUNNING.. HIT ANY KEY TO STOP".
Test the program by flipping the DIP switches and you should see that each switch affects its corresponding output
LED.

When you press a key, the program will stop, the registers will be displayed (just as if the "R" command had been
executed) and the minus prompt will appear.

82

EXERCISE 13.0

1. Enter the following Hex bytes into the memory locations shown below and verify the memory contents for
accuracy.

8F01 11
8F02 05
8F03 04
8F04 2E
8F05 07
8F06 63
8F07 24
8F08 3E
8F09 02
8F0A 47
8F0B 0F
8F0C 48
8F0D 0C
8F0E FF

2. The addresses 8F01 to 8F0E now contain the machine code of a short program. Run this program starting
at address 8F01 (the first opcode of the program) and examine the register contents after its execution. To
run the program, use the Go command with a starting address of 8F01 and no breakpoint. After running the
program, fill in the register and flag contents below.

PC______ B___ C___ D___ E___ H___ L___ A___ Sf__ Zf__ ACf__ Pf__ Cf__

3. Using the List command, disassemble the program of exercise question #1 starting at 8F01. Fill in the
mnemonics and operands below. The first mnemonic with operands is given. There are 10 opcodes
(instructions) in the program and each instruction can have 1, 2, or 3 bytes depending on the operands.

1, LXI D,0405H
2. ________________
3. ________________
4. ________________
5. ________________
6. ________________
7. ________________
8. ________________
9. ________________
10. ________________

4. Using the "D" command, Dump 16 memory locations starting at address 8F01. Fill in the associated blanks
below.

 0 1 2 3 4 5 6 7 8 9 A B C D E F 012345678ABCDEF
8F01 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ _______________

5. Using the "F" command Fill 16 memory locations starting at address 8F01 with the ASCII character "+" (plus).
The Hex value of "+" is 2B. To verify the Fill command, Dump 16 memory locations beginning at address 8F01
and fill in the associated blanks below.

 0 1 2 3 4 5 6 7 8 9 A B C D E F 012345678ABCDEF
8F01 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ _______________

83

QUESTIONS 13.0

1. List two advantages and two disadvantages of using EMOS instead of MOS.

2. List the ASCII codes in hex for the string "8085 PRIMER" . (See ASCII table in Appendix A)

3.. What EMOS command could be used to verify that the ASCII string of question #2 is correct?

4. ASCII is an acronym for __.

5. What ASCII character is used as the EMOS prompt?

6. What ASCII character is entered to display the EMOS Help Menu?

7. What button or key is pressed to stop executing a program and return to the EMOS prompt?

8. What button or key is pressed to stop Editing and return to the EMOS prompt?

9. To back up 10 bytes when using the Edit command (without exiting), you would enter _______ .

10. If a data entry error is made using an EMOS command, what key would abort the command and return you
to the EMOS prompt?

11. Are the registers initialized to the same values for EMOS as they are for MOS? If not, what register values
are different?

12. If a program is entered in MOS can it be executed in EMOS? If a program is entered in EMOS can it be
executed in MOS?

13. If a register is changed in MOS does it remain changed in EMOS?

APPENDIX A
Jumper Descriptions and I/O addresses

Jumper Descriptions

JUMPER DESCRIPTION
JP1 This allows the selection of one of the following baud rates: 300, 600,

1200, 4800, 9600 and 19,200.

OJ1 This is used to select the sources for the 8085's RST 5.5 and RST 6.5
interrupt inputs. The RST 5.5 interrupt pin is connected to the 8279
interrupt request line when there is a connector between pins 4 and 5,
or, if a connector is between pins 3 and 4, it is connected to the 8251
receiver ready line. The RST 6.5 interrupt pin is connected to the 8251
receiver ready line when there is a connector between pins 2 and 3.
Putting a connector between pins 1 and 2 connects RST 6.5 to +5v. This
jumper can also be used to connect RST 5.5 and RST 6.5 to external
interrupt sources. Pin 2 of the jumper is connected to RST 6.5 and pin
4 is connected to RST 5.5.

0J2 This jumper selects the EPROM size. Position 'A' allows an 8 or 16K
EPROM to be placed in slot 0 and position 'B' allows a 32K EPROM to be
placed in the slot.

0J3 This selects one of the two memory maps which are as follows:

POSITION 'A' MEMORY MAP
SLOT 0 0000 TO 3FFF
SLOT 1 4000 TO BFFF
8155 RAM C000 TO FFFF (only 256 bytes available)

POSITION 'B' MEMORY MAP
SLOT 0 0000 TO 7FFF
SLOT 1 8000 TO FFFF
8155 RAM (not accessible)

I/O Addresses

REFERENCE I/O ADDRESS DESCRIPTION

8251 DATA REGISTER 80 H DATA INPUT/OUTPUT

8251 CONTROL REGISTER 81 H CONFIGURATION

8155 CONTROL REGISTER 10 H CONFIGURATION

PORT A 11 H OUTPUT PORT (LEDs)

PORT B 12 H INPUT PORT (DIPSWITCH)

PORT C 13 H ANALOG OUTPUT PORT

TIMER LOW 14 H LOW ORDER TIMING BYTE

TIMER HIGH 15 H HIGH ORDER TIMING BYTE & CONTROL

EXPANSION I/O C0 - FF H EXPANSION CONNECTOR

APPENDIX B

Instruction Set Encyclopedia

8085A CPU Instructions In Operation Code Sequence

OP Code Mnemonic OP Code Mnemonic OP Code Mnemonic OP Code Mnemonic
00 NOP 40 MOV B,B 80 ADD B C0 RNZ
01 LXI B,D16 41 MOV B,C 81 ADD C C1 POP B
02 STAX B 42 MOV B,D 82 ADD D C2 JNZ Adr
03 INX B 43 MOV B,E 83 ADD E C3 JMP Adr
04 INR B 44 MOV B,H 84 ADD H C4 CNZ Adr
05 DCR B 45 MOV B,L 85 ADD L C5 PUSH B
06 MVI B,D8 46 MOV B,M 86 ADD M C6 ADI D8
07 RLC 47 MOV B,A 87 ADD A C7 RST 0
08 - 48 MOV C,B 88 ADC B C8 RZ
09 DAD B 49 MOV C,C 89 ADC C C9 RET
0A LDAX B 4A MOV C,D 8A ADC D CA JZ Adr
0B DCX B 4B MOV C,E 8B ADC E CB -
0C INR C 4C MOV C,H 8C ADC H CC CZ Adr
0D DCR C 4D MOV C,L 8D ADC L CD CALL Adr
0E MVI C,D8 4E MOV C,M 8E ADC M CE ACI D8
0F RRC 4F MOV C,A 8F ADC A CF RST 1
10 - 50 MOV D,B 90 SUB B D0 RNC
11 LXI D,D16 51 MOV D,C 91 SUB C D1 POP D
12 STAX D 52 MOV D,D 92 SUB D D2 JNC Adr
13 INX D 53 MOV D,E 93 SUB E D3 OUT D8
14 INR D 54 MOV D,H 94 SUB H D4 CNC Adr
15 DCR D 55 MOV D,L 95 SUB L D5 PUSH D
16 MVI D,D8 56 MOV D,M 96 SUB M D6 SUI D8
17 RAL 57 MOV D,A 97 SUB A D7 RST 2
18 - 58 MOV E,B 98 SBB B D8 RC
19 DAD D 59 MOV E,C 99 SBB C D9 -
1A LDAX D 5A MOV E,D 9A SBB D DA JC Adr
1B DCX D 5B MOV E,E 9B SBB E DB IN D8
1C INR E 5C MOV E,H 9C SBB H DC CC Adr
1D DCR E 5D MOV E,L 9D SBB L DD -
1E MVI E,D8 5E MOV E,M 9E SBB M DE SBI D8
1F RAR 5F MOV E,A 9F SBB A DF RST 3
20 RIM 60 MOV H,B A0 ANA B E0 RPO
21 LXI H,D16 61 MOV H,C A1 ANA C E1 POP H
22 SHLD Adr 62 MOV H,D A2 ANA D E2 JPO Adr
23 INX H 63 MOV H,E A3 ANA E E3 XTHL
24 INR H 64 MOV H,H A4 ANA H E4 CPO Adr
25 DCR H 65 MOV H,L A5 ANA L E5 PUSH H
26 MVI H,D8 66 MOV H,M A6 ANA M E6 ANI D8
27 DAA 67 MOV H,A A7 ANA A E7 RST 4
28 - 68 MOV L,B A8 XRA B E8 RPE
29 DAD H 69 MOV L,C A9 XRA C E9 PCHL
2A LHLD Adr 6A MOV L,D AA XRA D EA JPE Adr
2B DCX H 6B MOV L,E AB XRA E EB XCHG
2C INR L 6C MOV L,H AC XRA H EC CPE Adr
2D DCR L 6D MOV L,L AD XRA L ED -
2E MVI L,D8 6E MOV L,M AE XRA M EE XRI D8
2F CMA 6F MOV L,A AF XRA A EF RST 5
30 SIM 70 MOV M,B B0 ORA B F0 RP
31 LXI SP,D16 71 MOV M,C B1 ORA C F1 POP PSW
32 STA Adr 72 MOV M,D B2 ORA D F2 JP Adr
33 INX SP 73 MOV M,E B3 ORA E F3 DI
34 INR M 74 MOV M,H B4 ORA H F4 CP Adr
35 DCR M 75 MOV M,L B5 ORA L F5 PUSH PSW
36 MVI M,D8 76 HLT B6 ORA M F6 ORI D8
37 STC 77 MOV M,A B7 ORA A F7 RST 6
38 - 78 MOV A,B B8 CMP B F8 RM
39 DAD SP 79 MOV A,C B9 CMP C F9 SPHL
3A LDA Adr 7A MOV A,D BA CMP D FA JM Adr
3B DCX SP 7B MOV A,E BB CMP E FB EI
3C INR A 7C MOV A,H BC CMP H FC CM Adr
3D DCR A 7D MOV A,L BD CMP L FD -
3E MVI A,D8 7E MOV A,M BE CMP M FE CPI D8
3F CMC 7F MOV A,A BF CMP A FF RST 7

D8 = constant, or logical / arithmetic expression D16 = constant, or logical / arithmetic expression
 that evaluates to an 8 bit data quantity. that evaluates to a 16 bit data quantity.
Adr = 16-bit address

APPENDIX C

ASCII CHARACTER SET

ASCII CHARACTER SET FOR THE PRIMER TRAINER

ASCII is an acronym for American Standard Code for Information Interchange. ASCII provides a standard code for
using numbers to represent characters. As you know a computer can only store and manipulate numbers, so ASCII
provides the computer a way to store and manipulate text. Each character is represented by a single byte, allowing
for up to 256 unique codes. For example if 30H was sent to a printer it would print the character 0. There is a
variety of computer peripherals that use ASCII, i.e. keyboards, printers, and terminals. The table below contains a
subset of the ASCII character set.

HEX CODE CHARACTER HEX CODE CHARACTER

20 SPACE (BLANK) 41 A
21 ! 42 B
22 “ 43 C
23 # 44 D
24 $ 45 E
25 % 46 F
26 & 47 G
27 ‘ 48 H
28 (49 I
29) 4A J
2A * 4B K
2B + 4C L
2C , 4D M
2D - 4E N
2E . 4F O
2F / 50 P
30 0 51 Q
31 1 52 R
32 2 53 S
33 3 54 T
34 4 55 U
35 5 56 V
36 6 57 W
37 7 58 X
38 8 59 Y
39 9 5A Z
3A : 5B [
3B ; 5C \
3C < 5D]
3D = 5E ^
3E > 5F _
3F ? 60 `
40 @

	Primer Trainer Lab Manual
	Table of Contents
	Lab Experiments
	LAB 1: Introduction to Computers
	LAB 2: Computer Number Systems
	LAB 3: Computer Logic Operations
	LAB 4: Computer Languages
	LAB 5: Using the Monitor Operating System
	LAB 6: Software Single Stepping and Breakpoints
	LAB 7: Loading Registers
	LAB 8: Transfering Data Between Registers
	LAB 9: Incrementing and Decrementing Registers
	LAB 10: Program Looping
	LAB 11: Pushing, Popping, and the Stack
	LAB 12: Subroutines and Services
	LAB 13: Using the Enhanced Monitor Operating System (EMOS)

	Appendices
	Appendix A: Jumper Descriptions and I/O Addresses
	Appendix B: Instruction Set Encyclopedia
	Appendix C: ASCII Character Set

