
APPLICATION 6-1

Application 6: External Multiplexed Display and Keypad Decoder

Purpose: To demonstrate and emulate the functions of a keypad and two digit
LED display controller.

Goals:
1. Build and test a keypad and numeric LED display interface.
2. Load a program that will demonstrate the numeric LED display

interface.
3. Modify the program and load additional code which will demonstrate

the keypad decoder.

Component Description Digi-Key part number
2) 2N3904 or 2N2222 2N3904-ND or 2N2222-ND
1) 74ls240 DM74LS240N-ND
1) 4x4 matix keypad GH5004-ND
1) 2 digit LED display P355-ND
9) 150 ohm 5% 1/4 watt resister
1) 1 Kohm 5% 1/4 watt resister

This application will be demonstrated in two phases: with the display only,
and then with the keypad and display.

Display Controller Circuit DescriptionDisplay Controller Circuit Description

To drive an external 7 segment
display using the trainer, the
8 output lines (numbered 0 to
7) would be the obvious
choice. This would provide
control for each of the 7
elements leaving one output
line free. What if we want to
drive two digits?. We need 7
more outputs which we don't
have. The answer to this
problem is to use a
multiplexed scheme of driving
the digits.

We can drive the anodes of
each of the elements of the
pair of 7 segment displays
with the same outputs (one
output per matching pair of
segments) and use the 8th
(bit 7) to select which
display will turn on by
driving the cathode of the
desired digit to ground. This
will allow us to display data
on the left digit and turn the right one off, and vice-versa. If this is
done rapidly enough it will appear as if both digits are showing
simultaneously, due to "persistence of vision" in the human eye.

To lessen the load on the output port, the outputs drive a 74LS240 tri-state
inverting buffer and the outputs of this go to the anodes of both digits of
the display. The buffer's two enable lines are tied to the Primer's digital
to analog (D/A) output and they tri-state the outputs when the D/A is output
is 5V. This turns off the display which will be necessary when including
the keypad in the circuit. When the D/A output is 0V the buffer is enabled

APPLICATION 6-2

and the outputs go to the opposite logic level as their respective inputs.

If the buffer is enabled, bit 7 selects which display to turn on. If bit 7
is high, the voltage applied to the base of Q1 will bring the cathode for
the left display to ground, causing it to turn on. When this happens, the
base of Q2 is pulled to ground causing it to turn off, which turns off the
display on the right. When bit 7 is low, this turns off Q1 which allows
the base voltage of Q2 to rise and turn on the display on the right.

;
; External Multiplexed Display and Keypad Decoder program.
;
OPORT EQU 11H ;OUTPUT PORT
IPORT EQU 12H ;INPUT PORT
MOS EQU 1000H ;MOS CALL ADDRESS
DACSRV EQU 0EH ;D/A SERVICE

ORG 0FF01H

LOOP: IN IPORT ;READ DIP SWITCHES
MOV B,A
CALL HEXOUT ;DISPLAY B
JMP LOOP

;
; Display the hex value of B on the LEDs. This routine must be
; called repeatedly in order for the data to be shown continuously,
; since it works on the principle of persistance of vision. The right
; digit is turned on and off first, then the left digit is turned on and off.
;
HEXOUT: MOV A,B ;GET VALUE

ANI 0FH ;MASK OFF UPPER NIBBLE
CALL BIN7SG ;CHANGE TO 7 SEG VALUE
OUT OPORT ;SEND TO PORT
CALL FLSHDG ;TURN ON DISPLAY MOMENTARILY

MOV A,B ;GET ORIGINAL VALUE
ANI 0F0H ;NOW MASK OFF LOWER NIBBLE
RRC
RRC
RRC
RRC
CALL BIN7SG ;CHANGE TO 7 SEG VALUE
ORI 80H ;SET BIT 7 SO LEFT DIGIT IS DISPLAYED
OUT OPORT ;SEND TO PORT
CALL FLSHDG ;TURN ON DISPLAY MOMENTARILY
RET

;
; Change the binary number in A to its 7 seg. output pattern.
;
BIN7SG: PUSH H

PUSH D
LXI D,TAB7SG ;POINT TO START OF TABLE
MVI H,0
MOV L,A ;HL = OFFSET INTO TABLE
DAD D ;ADD TABLE ADDR TO OFFSET
MOV A,M ;GET OUTPUT PATTERN
POP D
POP H
RET

;
; TRANSLATE TABLE FOR LED OUTPUT
;
TAB7SG: DB 40H,79H,24H,30H

DB 19H,12H,02H,78H
DB 00H,18H,08H,03H
DB 46H,21H,06H,0EH

;
; This flashes on and off the digit selected by bit 7 sent to OPORT.

APPLICATION 6-3

;
FLSHDG: PUSH D

PUSH PSW
CALL LEDON ;ENABLE LEDS
LXI D,0FFH

DELAY1: DCX D
MOV A,D
ORA E
JNZ DELAY1
CALL LEDOFF ;DISABLE LEDS
POP PSW
POP D
RET

;
; LEDON, LEDOFF, TURN ON/OFF THE LEDS THROUGH THE D/A OUTPUT
; 5V OUT TRI-STATES THE OUTPUTS OF THE 74LS240
; 0V OUT ENABLES THE OUTPUTS OF THE 74LS240
;
LEDON: MVI E,0 ;SEND OUT 0V

JMP LEDCTL
LEDOFF: MVI E,0FFH ;SEND OUT 5V
LEDCTL: MVI C,DACSRV ;D/A SERVICE

CALL MOS
RET

Display Controller Software Description

The program will be described from the lowest level subroutine to the main
routine.

LEDON, LEDOFF
The subroutine LEDON turns on the selected display by sending 0V from the
D/A into the 74LS240 enables and LEDOFF turns them off by sending 5V.

FLSHDG
This CALLs LEDON, goes into a delay loop and then CALLs LEDOFF. This causes
the display selected by bit 7 to display for the period of time of the
delay.

BIN7SG
This converts the number in the accumulator (A), which is in the range of 0
to F hex, to its corresponding binary pattern which will be used by another
routine to illuminate the desired display segments. Since each element of a
digit is controlled by bits 0 to 6 the bit pattern sent to the output port
will form specific patterns. The table TAB7SG used by this routine has
these bit patterns for digits 0 to F.

HEXOUT
This displays the hex value of the B register on the displays. This routine
must be called repeatedly in order for the data to appear to be shown
continuously, since it works on the principle of persistence of vision. The
upper 4 bits of B are masked off leaving only the lower 4 bits which are
converted to the appropriate binary pattern using BIN7SG and and this
pattern is sent to the output port. Since the patterns received from BIN7SG
always have bit 7 cleared, this will turn on the digit on the right when
FLSHDG is called. To display the left digit, the lower 4 bits are masked
off of B and the upper 4 are moved to the lower 4 bit positions. This value
is converted using BIN7SG, bit 7 of the result is set to 1, and it is sent
to the output port. This time when FLSHDG is called, the left digit will be
displayed since bit 7 is set.

The main loop of this first example gets its input from the DIP switches,
copies the value to B, CALLs HEXOUT and loops back to read the DIP switches
again.

APPLICATION 6-4

Using the ProgramUsing the Program

Build the circuit and then check your work. Now load the following program
into memory and run it. With all the DIP switches in the ON position the
port will input 00 and this should be shown on the displays. The binary
value input to the DIP switches will be shown in hex on the displays (refer
to the section at the beginning of this manual which discusses binary to hex
conversion). Set the DIP switches so one digit is different than the other.

It appears that both digits are showing at the same time. To show what is
really happening, we can increase the delay in FLSHDG so we can see what is
really happening. Change the byte at FF4B from 00 to FF and run the program
again. The displays can now be seen alternating left to right with each
change in bit 7. Note that the PRIMER's digital output LEDs reflect the
data sent to the output port (output bits of 0 turn on these LEDs). Watch
the binary pattern on bits 6 to 0 as the digits change.

Move the DIP switches to the off position so that "FF" is displayed (this
guarantees that none of the inputs are being pulled low), stop the program
and change the byte at FF4B back to 00 again.

ADDRESSADDRESS DATADATA DESCRIPTIONDESCRIPTION FF2D 00
FF01 D3 IN 12 FF2E 6F MOV L,A
FF02 12 FF2F 19 DAD D
FF03 47 MOV B,A FF30 7E MOV A,M
FF04 CD CALL FF0A FF31 D1 POP D
FF05 0A FF32 E1 POP H
FF06 FF FF33 C9 RET
FF07 C3 JMP FF01
FF08 01
FF09 FF
FF0A 78 MOV A,B
FF0B E6 ANI 0F
FF0C 0F
FF0D CD CALL FF27
FF0E 27
FF0F FF
FF10 D3 OUT 11
FF11 11
FF12 CD CALL FF44
FF13 44
FF14 FF
FF15 78 MOV A,B
FF16 E6 ANI F0
FF17 F0
FF18 0F RRC
FF19 0F RRC
FF1A 0F RRC
FF1B 0F RRC
FF1C CD CALL FF27
FF1D 27
FF1E FF
FF1F F6 ORI 80
FF20 80
FF21 D3 OUT 11
FF22 11
FF23 CD CALL FF44
FF24 44
FF25 FF
FF26 C9 RET
FF27 E5 PUSH H
FF28 D5 PUSH D
FF29 11 LXI D,FF34
FF2A 34
FF2B FF
FF2C 26 MVI H,00

APPLICATION 6-5

ADDRESSADDRESS DATADATA DESCRIPTIONDESCRIPTION
FF34 40 (PATTERN FOR "0")
FF35 79 (PATTERN FOR "1")
FF36 24 (PATTERN FOR "2")
FF37 30 (PATTERN FOR "3")
FF38 19 (PATTERN FOR "4")
FF39 12 (PATTERN FOR "5")
FF3A 02 (PATTERN FOR "6")
FF3B 78 (PATTERN FOR "7")
FF3C 00 (PATTERN FOR "8")
FF3D 18 (PATTERN FOR "9")
FF3E 08 (PATTERN FOR "A")
FF3F 03 (PATTERN FOR "B")
FF40 46 (PATTERN FOR "C")
FF41 21 (PATTERN FOR "D")
FF42 06 (PATTERN FOR "E")
FF43 0E (PATTERN FOR "F")
FF44 D5 PUSH D
FF45 F5 PUSH PSW
FF46 CD CALL FF58
FF47 58
FF48 FF
FF49 11 LXI D,00FF
FF4A FF
FF4B 00
FF4C 1B DCX D
FF4D 7A MOV A,D
FF4E B3 ORA E
FF4F C2 JNZ FF4C
FF50 4C
FF51 FF
FF52 CD CALL FF5D
FF53 5D
FF54 FF
FF55 F1 POP PSW
FF56 D1 POP D
FF57 C9 RET
FF58 1E MVI E,00
FF59 00
FF5A C3 JMP FF5F
FF5B 5F
FF5C FF
FF5D 1E MVI E,FF
FF5E FF
FF5F 0E MVI C,0E
FF60 0E
FF61 CD CALL 1000
FF62 00
FF63 10
FF64 C9 RET

Scanning the KeypadScanning the Keypad

To read a 4 by 4 matrix keypad we need 4 inputs and 4 outputs. The 4 inputs
will check for a key pressed in one of the 4 columns in the current row
selected by the 4 outputs. Since all of the outputs are currently being
used, where do we get 4 more? We will use the same ones used for the
displays but we will only use them while the displays are off (this is why
we needed the circuitry to turn off both displays).

The subroutine KEYSCN (shown below), which will be added to the previous
program, will be CALLed while the digits are off so that the changes in the
output port will not be visible. When a key is pressed, the routine will
modify the B register by shifting it left 4 bits and putting the binary
value of the key into the lower 4 bits.

When KEYSCN is CALLed, output bits 0 to 3 are set to 0 to select all 4 rows

APPLICATION 6-6

at once. When the input port is read and all of the lower 4 bits are 1,
this indicates no key is pressed and the routine is exited without changing
B. If any of the lower 4 bits are 0 this indicates a key has been pressed.
The routine then selects 1 row at a time (by setting 1 of the output bits to
0 and the others to 1) until the input port reads a 0 on any of the lower 4
bits. When this happens, the row is found, and the column is found by
finding which input port bit was 0. When the row and column is found it is
translated to a value from 0 to F hex. The B register is shifted 4 bits to
the left and this new value is put in the lower 4 bits and the routine
exits.

There is another feature in KEYSCN which keeps a key that is being held
closed from modifying the B register more than 1 time. When a key is
pressed, the H register is loaded with a value which defines the minimum
number of times KEYSCN must be CALLed while no key is pressed before it will
recognize another key press. For example, when a key is pressed, B is
modified by the new key value and H is loaded with 20 hex before exiting
KEYSCN. On the next entry to KEYSCN the keypad will be examined to see if a
key has been pressed and if one is pressed, H is not decremented and the
routine is exited without changing B. If no keys are being pressed, H is
decremented and the routine is exited without changing B. If no keys are
pressed for 32 (20 hex) CALLs of KEYSCN then H will be 0 and any key pressed
after this time will affect the B register, and again, H will be loaded with
20 hex.

;
; This routine checks for a key pressed and if there is one, register B
; is shifted left one nibble and the key value is put in the low nibble.
; The subsequent CALLs after a CALL that affected B, will not affect B
; again until no key has been pressed for 20 CALLs and then a key is
; pressed again. This prevents a single key press from being
; interpreted as more than one.
;
; On entry and exit: H=debounce counter
;
DBOUNCE EQU 20 ;NUMBER OF CALLs FOLLOWING A KEY PRESS
KEYSCN: XRA A ;A=0

OUT OPORT ;SELECT ALL 4 ROWS
IN IPORT ;READ ALL 4 ROWS OF KEYPAD
ANI 0FH ;MASK OFF UPPER 4 BITS
CPI 0FH ;IF 0FH THEN NO KEYS PRESSED
JNZ KEYSC1 ;SKIP IF KEY READY

; NO KEY PRESSED, SO DEC. THE DEBOUNCE (IF>0) AND EXIT
INR H
DCR H ;IS DEBOUNCE 0?
RZ ;RETURN IF YES
DCR H ;DEC ONCE MORE
RET

KEYSC1: INR H
DCR H
RNZ ;IF DEBOUNCE <> 0 EXIT

; SCAN FOR SPECIFIC ROW
PUSH D
MVI E,01111111B ;ROW SCAN VALUE (WILL BE ROTATED)
MVI D,-4 ;ROW ADDER (+4=0)

KEYSC2: MOV A,E ;GET ROW SCAN VALUE
RLC ;ROTATE IT
OUT OPORT ;SEND ROW SCAN TO OUTPUT PORT
MOV E,A ;SAVE BACK NEW ROW SCAN

MOV A,D ;GET ROW ADDER
ADI 4 ;INC ROW ADDER BY 4
MOV D,A ;SAVE IT

APPLICATION 6-7

IN IPORT ;SEE IF THIS ROW HAS CHAR READY
ANI 0FH ;MASK OFF UPPER
CPI 0FH
JZ KEYSC2 ;LOOP TILL <> 0FH

; FIND WHAT COL. IT'S IN
MVI L,0FFH ;SET SO INR WILL MAKE 0

KEYPD1: INR L
RRC
JC KEYPD1 ;LOOP TILL NO CY
; NOW ADD COL. TO ROW ADDER
MOV A,D ;GET ROW ADDER
ADD L
MOV L,A ;L IS THE KEY PRESSED (0 TO F HEX)
; SHIFT B LEFT 1 NIBBLE AND PUT L IN LOWER NIBBLE
MOV A,B ;SHIFT B
ADD A
ADD A
ADD A
ADD A ;THIS SHIFTS LEFT PADDING 0's
ADD L ;PUT L IN LOWER NIBBLE
MOV B,A ;NEW B REG

MVI H,DBOUNCE ;DEBOUNCE VAL. (NO KEYS ACCEPTED TILL 0)
POP D
RET

Using the Program

The previous program will be modified slightly (assuming it is still in
memory) by putting CALL KEYSCN in the program in place of IN IPORT, MOV B,A
and a new subroutine will be added at the end. (Pay close attention to the
addresses when entering the following program, since there is a skip in
sequence of the addresses after the first three.) When you run the program
you should see the key you press on the right display and the digit that was
there before, moved to the left display. As you have just seen demonstrated
in this application, multiplexing allows you to greatly extend the
capabilities of an output port.

ADDRESSADDRESS DATADATA DESCRIPTIONDESCRIPTION FF7B 7F
FF01 CD CALL FF65 FF7C 16 MVI D,FC
FF02 65 FF7D FC
FF03 FF FF7E 7B MOV A,E
: : FF7F 07 RLC
: : FF80 D3 OUT 11
FF65 AF XRA A FF81 11
FF66 D3 OUT 11 FF82 5F MOV E,A

 FF83 7A MOV A,D
FF67 11
FF68 DB IN 12 ADDRESSADDRESS DATADATA DESCRIPTIONDESCRIPTION
FF69 12 FF84 C6 ADI 04
FF6A E6 ANI 0F FF85 04
FF6B 0F FF86 57 MOV D,A
FF6C FE CPI 0F FF87 DB IN 12
FF6D 0F FF88 12
FF6E C2 JNZ FF76 FF89 E6 ANI 0F
FF6F 76 FF8A 0F
FF70 FF FF8B FE CPI 0F
FF71 24 INR H FF8C 0F
FF72 25 DCR H FF8D CA JZ FF7E
FF73 C8 RZ FF8E 7E
FF74 25 DCR H FF8F FF
FF75 C9 RET FF90 2E MVI L,FF
FF76 24 INR H FF91 FF
FF77 25 DCR H FF92 2C INR L
FF78 C0 RNZ FF93 0F RRC
FF79 D5 PUSH D FF94 DA JC FF92
FF7A 1E MVI E,7F FF95 92

APPLICATION 6-8

FF96 FF
FF97 7A MOV A,D
FF98 85 ADD L
FF99 6F MOV L,A
FF9A 78 MOV A,B
FF9B 87 ADD A
FF9C 87 ADD A
FF9D 87 ADD A
FF9E 87 ADD A
FF9F 85 ADD L
FFA0 47 MOV B,A
FFA1 26 MVI H,14
FFA2 14
FFA3 D1 POP D
FFA4 C9 RET

