
2390 EMAC Way, Carbondale, IL 62901
World Wide Web: www.emacinc.com
(618) 529-4525 FAX: (618) 457-0110

LINUX STARTER KIT

LINUX PRIMER

 MANUAL

By

Graeme Cross

v1.1, 22 April 1999

Linux Primer Overview

Paths

The first concept that is essential to understand Linux is that of paths. A path is the
means by which one indicates a file. There are two kinds of path: absolute and relative.
An absolute path is one that indicates a file's location from the 'root directory.' An
absolute path for a file in my directory might look like this: /home/lester/xjewel.scores

This means that the file I'm interested in refering to (xjewel.scores) is in my directory
(lester/), which is in the direcory containing user directories (home/) which is in the root
directory (/). Alternatively, if I were in my directory (/home/lester), I could refer to
xjewel.scores simply by typing it's name, thus: xjewel.scores

This is an example of relative paths. But, from /home, I could refer to the same file by
using this path: /lester/xjewel.scores

There are two other 'directories' in each directory. One is . , which indicates the current
directory, so ./xjewel.scores is the same as xjewel.scores, and, more importantly, .. refers
to the directory in which the current directory is contained, called the parent directory.
That way, if my current directory was /home/lester/whitesocks, I could call the example
file ../xjewel.scores.

While all this may seem somewhat involved and nebulous, paths are central both to using
Linux and to programming in HTML. For instance, why don't we start with a bunch of
commands that use paths as arguements.

Path Commands

cd - Change directories

cd is one of those commands that's used with alarming frequency. What cd does is to
change one's current directory to the directory indicated by the path one gives to cd.
For instance: cdwill take you to your home directory. cd ~[username]will take you to
the directory of the user [username]. cd ..will move one up to the parent directory of
the current one. cd /will change the current directory to the root directory. cd .has no
effect. The idea expressed is 'change from this directory to this directory.'

mkdir dirname

mkdir is short for make directory. (If you were wondering how these directories came
from, mkdir is the answer.) Typing mkdir dirname adds dirname to the current
directory. If one calls mkdir with the -p option, thus: mkdir -p

onedir/twodir/dirnamemkdir will make all the non-existant directories as well. If
onedir existed, but twodir didn't, mkdir would create twodir in onedir, and then
dirname in twodir.

pwd

pwd is an acronym for 'present working directory,' and returns the path of the
directory one is in at the moment, viz: whiskey:lester:7:pwd /usr/people/lester

cp source dest

cp isshort for copy. The cp command works two different ways depending on what
source and dest are.

1. If source and dest are both paths that indicate a file, cp copies the contents of
source into dest. Be careful, because the result will be that you have two
copies of source, and the information in dest is gone.

2. If source is a file, and dest is a path to a non-existant file, cp will make a copy
of a file at dest.

3. If source is a list of files and dest is a directory, cp will make copies of the
files with the same names, but in the dest directory.

mv source dest

mv is short for move. Like cp, mv works differently depending on the arguments
passed to it. Thus:

1. If source and dest are paths to files, the source is moved into dest, erasing dest
and replacing it with source. Note that source will no longer exist under that
name, and that the contents of dest will be replaced with those of source.

2. If source is a file, and dest is a path to a non-existant file, mv will change the
name of source to dest (changing it's path if necessary.) Think of this as
moving the file between file folders.

3. If source is a list of files, and dest is a directory, the files in source will be
moved into dest, using the same filenames.

ls - list contents of a directory

ls is another command that is used with frightening regularity. Again, ls works
differently under different conditions.

1. If typed by itself ('ls '), ls will display a list of the contents of the current
directory.

2. If entered with the -l option ('ls -l'), ls displays a list of all files, with additional
information about each, like owner's name, the permissions of the file,
modification date, what kind of file it is, and its size. (Some of these ideas will
be explained later, others aren't terribly important, and others are assumed to
be evident.)

3. The -a option ('ls -a') gets ls to display all the contents of a directory, including
any file that begins with a '.' (including .login, . and ...) Note that ls -la displays a
long view (i.e. with lots of semi-relevant information) of all the contents of a
directory.

4. If you give ls a directory (ls /home/lester,) it will list the contents of that
directory. (Adding the -a and -l options (or -la) will do appropriate things to
the listing.)

5. Giving ls a wildcard expression (one that contains * or ?), it will return a list
of all files that match that expression in the current directory. Further, if the
expression is a directory, all the contents of that directory that match the
expression will be listed. Also, any directories that match the expression will
have their contents listed, with the name of the directory as a header.

The discussion of ls brings up several topics of confusion which will now be expounded
upon:

Permissions, Owners and Wildcards

In Unix, and in Linux, files have permissions. Permissions indicate who gets to use the
file, and what they can do with it. There are nine permissions that can either be granted or
removed: The owner's permission to read the file, write to it, or execute it, the owner's
group's (a concept seldom used) permissions to read, write or execute, and the global
permissions do the same. (Global permissions apply to everyone, except the owner and
his group.)

Permissions are usually written one of two ways. The first way is used by ls to describe
permissions. It consists of ten characters, the first indicates the type of file (- for regular
files, d for directories, and l for symbolic links (don't worry too much about links)), the
next three indicate the user's permissions, the next three are group, and the next three are
global permissions. In this context, permissions are indicated either by a - or a letter, an r
in the read position, a w in the write position, and an x in the execute position. Thus an
example permission string: -r-xrw--x.

The second way of indicating permissions is the one used to send a permission set to
various commands, notably chmod (which we'll get to soon). This method uses three
digits, where the first digit is the owner's permissions, the second is his groups's, and the
last is the world's. Two determine what a digit is, add the values of the permissions: 4 is
read, 2 is write, and 1 is execute. Therefore, the permission of the previous example in
this form is 561. This form is used whenever a permission set is sent to a command.

Another important concept are those of wildcards. Wildcards save time, effort, and allow
one to limit the breadth of one's search. Essentially, a wildcard expression is a regular
path, but with *'s and ?'s in place of letters. A command to which a wildcard expression is
passed will be applied to all paths which match the expression. An * matches any number
of characters, with any character in it's place, while a ? matches any one character. pl*
matches ply, plague, place, plateau, etc. pl? matches pla, plb, plc etc.

Equally important are regular expressions. Regular expressions (or regexs) are like
wildcards, but more powerful. There are three basic elements of regexs : ., *, and []. '.'
allows for matching of any number of the character that follows it. Thus foo.b matches
foo, foob, foobb, foobbb, etc. * matches any single character. foob*r matches foobar,
foobbr, foobcr, etc. [] contain ranges to be matched. For example [a-z] matches any lower
case letter, [a-z, A-Z] matches any letter, [0-9] matches any number. foo[0-9] matches
foo0, foo1, foo2, foo3, foo4, foo5, foo6, foo7, foo8, and foo9. These elements can be
combined: .* will match any number of any character, .[A-Z] will match any number of
upper case letters.

Permissions Commands

chmod permission file -change permissions

chmod is the means by which the permissions of files changes. The permission
argument is a numerical representation permission, and the file is the file whose
permissions you want changed.

chown user file

This command changes the owner of a file. Usually the person who created the file is
it's owner, but sometimes you have to make a file for someone else, and then 'give' it
to them. This is accomplished via chown.

Generally Really Useful Commands

man commandname

man is short for manual. It produces (usually) a helpful, if somewhat cryptic
descriptions of what various commands do. man accepts the name of the command
you need information about as its argument. If one's question is of the type "What
command does ... ", there are two options: 1) Enter a related command. man pages
often have See Also sections at the bottom, or 2) man -k word, where the word relates
to what you want done. The result will be a list of pages that contain that word, from
which you can select likely candidates. man is exceptionally useful for increasing
one's facility with Linux. As an exercise, use man to get more information about the
command is this tutorial.

passwd

Typing passwd will begin a brief dialog that will allow you to change your passwd,
something that should be done with relative frequency. Keep in mind that a password
should not be any actual English word, and that the use of non-letter characters (i.e.
numbers and punctuation) is encouraged, as this will make the password more
difficult to guess. Contrariwise, you need to be able to remember your password,
because: a) you shouldn't write it down and b) if you forget it, you'll need to get the
sysadmin to reset your password.

Linux Primer
Author: Graeme Cross, <gcross@netspace.net.au>
v1.1, 22 April 1999

--
This primer is an introduction for people new to both Linux and Unix, explaining the basic commands
needed to use Linux.
--

1. Preamble
1.1 Copyright
1.2 Credits
1.3 Assumptions
1.4 What this primer does not cover

2. What is Linux?

3. Linux: multi-user & multi-tasking

4. Logging in, logging out

5. Directories

6. Moving around

7. Some basic commands

8. Getting help about commands

9. Shutting down a Linux computer

10. Where to from here?

1. Preamble

1.1 Copyright
Copyright © Graeme Cross, 1999.
You may redistribute and/or modify this document as long as you comply with the terms of the GNU
General Public Licence, version 2 or later.

1.2 Credits
My thanks to the following people for their additions, comments and corrections: Tim Abbott, Mike
Battersby, Geoffrey Bennett, Peter Moulder.

1.3 Assumptions
I am assuming that you have installed a recent distribution of Linux, such as Red Hat (
http://www.redhat.com/) or Debian (http://www.debian.org/).

I also assume that you have basic computer skills: using a keyboard and mouse, etc.

1.4 What this primer does not cover
This primer does not cover installing Linux, using X-Windows, system administration, compiling programs
or using networking tools.

2. What is Linux?
Linux is a computer operating system, like Unix, Windows 95/NT, MacOS, and OS/2. It was originally
developed for Intel x86 processors, but now runs on Motorola 68k, Digital Alpha, Sun Sparc, MIPS,
Motorola PowerPC and a number of other machines. Linux is source compatible with Unix (this means that
programs which are written for Unix can be recompiled with no changes to run under Linux) and runs
nearly all of the same software as commercial Unix versions, but it is not descended from the non-free Unix
sources.

It supports a wide range of software, including graphical user interfaces, text editors, word processors,
databases, web servers, and an extensive collection of networking software (including PPP and ISDN).
Many people have run benchmarks on Pentium Linux systems and found them comparable with mid-range
workstations from Sun and Digital.

Linux (often pronounced with a short "i" and with the first syllable stressed -- LIH-nucks) is available over
the Internet from hundreds of ftp sites, and from various vendors on CD-ROM.
The Linux kernel is covered by the GNU General Public License (GPL), and is usually bundled with
various programs that comprise a working UNIX operating system. These software bundles are called
"distributions" and come in many sizes and arrangements.

Linux is being used today by millions of people around the world. It is used for software development,
networking (intra-office and Internet), and as an end-user platform. Linux has become a cost-effective
alternative to expensive UNIX and Windows NT systems.

(Adapted from http://www.linuxresources.com/what.html).

3. Linux: multi-user & multi-tasking
Linux is a multi-user and multi-tasking operating system. This means that the computer can be used by
more than one user simultaneously, and the computer can also run multiple programs simultaneously.

To co-ordinate this, each user has a user name and a corresponding password. There is also a number of
special users, the most important being the root user, who is the system administrator with complete access
to the computer. The root user account is usually only used for system administration tasks, such as adding
or removing user accounts.

4. Logging in, logging out
To gain access to your account, enter your user name at the login prompt, which will look something like
this:

Red Hat Linux release 4.2 (Biltmore)
Kernel 2.0.36 on an i586

guava login:

In this example, the computer is running Red Hat Linux version 4.2, and the word "guava" is the hostname
of the computer.

As soon as you have entered your user name, you will be prompted for your password, as shown below:

Red Hat Linux release 4.2 (Biltmore)
Kernel 2.0.36 on an i586

guava login: graeme
Password:

For security reasons, the password is not displayed on the screen as it is entered.

The username and password, like most parts of Linux, are case-sensitive, so make sure you enter your user
name correctly: GRAEME and graeme are two different user names! This also applies to passwords.

Once the username and password are entered correctly, you will be logged into your account, and have full
access to a shell, such as bash. The shell accepts user commands and displays information, and will be
familiar to anyone who has used DOS (but is far more powerful!).

Because Linux is a multi-user system, you can be logged into the computer on multiple virtual consoles:
pressing Alt-F1 switches you to the first virtual console, Alt-F2 switches you to the second virtual console,
etc.

This demonstrates one aspect of multi-tasking: for example, you can read your e-mail in one console, edit
files in another console, while playing Quake in a third console!

To exit the shell, type exit.

5. Directories
Linux keeps files in a single hierarchical directory structure, that (behind the scenes) is made up of a
combination of hard drives, CD-ROMs, floppy disks, ZIP drives, etc.

The typical Linux filesystem looks like this:
/
 |- bin Essential programs (or binaries)
 |- boot Startup (or boot) information
 |- dev Devices
 |- etc Configuration files
 |- home Users' home directories
 | |- user1
 | |- user2
 | |- user3
 |
 |- lib System libraries and other various program files
 |- lost+found Files recovered after filesystem checks
 |- mnt Mount point for removable disks
 | |- cdrom (An alternative is /cdrom and /floppy)
 | |- floppy
 |
 |- proc A special directory with file-based system information
 |- root Home directory for the root user
 |- sbin Essential system programs
 |- tmp Temporary work space
 |- usr
 | |- X11R6 X-Windows files
 | | |- bin X-Windows programs
 | | |- include
 | | |- lib
 | | |- man
 | | |- share
 | |
 | |- bin General programs
 | |- dict Dictionary
 | |- doc Documentation
 | |
 | |- etc Additional configuration files
 | |- include Include files for the C preprocessor
 | |- info GNU info files
 | |- lib Additional libraries
 | |- local Files generally not supplied by the distribution
 | | |- bin
 | | |- doc
 | | |- etc
 | | |- include
 | | |- lib
 | | |- man
 | | |- sbin
 | | |- share
 | |
 | |- man Man (ie. user manual) pages
 | |- share Files that can be shared between computers of different architectures
 | |- sbin Additional system programs

 | |- src Source code directories (eg. /usr/src/linux/)
 |
 |- var
 |- lock Lock files
 |- log Log files (system messages, error logs, etc.)
 |- spool Spool files
 |- mail Users' mailbox files

6. Moving around

pwd
Prints the current working directory

cd name
Change to a new directory

cd
Return to your home directory

There are three special directories: / refers to the root directory, which is the top of the directory tree. A
single period (.) refers to the current directory, while two periods (..) refers to the directory above the
current one.

7. Some basic commands

ls
List the contents of the current directory

ls name
List the contents of the named directory (eg. ls /etc)

ls -l
List the directory contents in "long" format, including file permissions, ownership details and

file size

ls -a
List all the files in a directory, including files that start with a '.'

cat filename
Display the contents of a file to the screen

more filename

Display a file on the screen, with scrolling and search facilities. less is an enhanced version
of more

cp source destination
Copy the source file to the destination (eg. cp /etc/passwd . copies the password file to the current
directory)

mv source destination
Move (or rename) the source file to the destination, which can be a directory or another file

rm filename
Remove (ie. delete) a file - use with caution!

mkdir name
Make a directory

rmdir name
Remove an empty directory

locate keyword
Displays a list of files that contain the keyword in their filename.

su
Temporarily become the superuser - useful for system administration tasks (can also be used to
become another user - see the man page for further information)

passwd
Change the password used to access your user account

who
Display a list of users currently logged onto this computer

8. Getting help about commands
Linux has two on-line documentation systems: man and info. There is a man page for every command on
the system, while info is normally used to document applications from the Free Software Foundation, such
as EMACS (a text editor) and gcc (a C compiler for programming).

man command
Display a manual page for the specified command. The "man" page provides a brief explanation
about the command, possible options and switches and detailed information about using the
command

apropos keyword
Displays a list of man pages that contain information about the supplied keyword

9. Shutting down a Linux computer
A Linux computer needs to be turned off correctly, to ensure that files are correctly written to the hard
drive, and that programs are closed properly.

Reboot the computer
/sbin/shutdown -r now

Shutdown (halt) the computer
/sbin/shutdown -h now

Reboot the computer
Press Control-Alt-Delete

When the shutdown command starts, it will display information as each step of the shutdown sequence is
completed, until the computer finally displays:

The system is halted

in which case you can turn off the computer, or

Please stand by while rebooting the system...

for a computer that is being rebooted.

10. Where to from here?
The Linux Documentation Project (http://metalab.unc.edu/LDP/) has an extensive collection of links and
documents, including the Linux HOWTOs (http://metalab.unc.edu/LDP/HOWTO/), which provide
information on a number of Linux issues, such as configuring networks, Linux-compatible hardware, and
setting up a PPP link to the Internet.

MS-DOS and MS Windows users should have a look at the "From DOS/Windows to Linux" HOWTO (
http://metalab.unc.edu/LDP/HOWTO/DOS-Win-to-Linux-HOWTO.html).

There are a number of freely-available books for Linux, published under the auspices of the Linux
Documentation Project. An excellent free book for Linux beginners is Matt Welsh's Installation and Getting
Started guide (http://metalab.unc.edu/LDP/LDP/gs/gs.html).

There are some good on-line introductions to Unix available at the Unix Reference Desk (
http://www.geek-girl.com/unix.html).

Other Linux web sites worth a look are:

• Linux Resources: http://www.linuxresources.com/
• The Linux Journal: http://www.linuxjournal.com/
• slashdot.org (Linux news): http://slashdot.org/

If you want to buy a Linux book, two excellent introductions to Linux are:

• Running Linux (2nd edition) by Matt Welsh and Lar Kaufmann, published by O'Reilly and
Associates

• A Practical Guide to Linux by Mark Sobell, published by Addison-Wesley

In addition, there are some useful mailing lists and USENET news groups that provide information and
support for new Linux users, such as:

• comp.os.linux.announce
• comp.os.linux.misc
• comp.os.linux.setup

