PCM-9361 SMBus/GPIO Programming Note

ICs:	Intel ICH7M PCA9554
Base I/	O address500h
ICH6 S	SMBus I/O Registers offset:
H	lost Status Register00h
	Bit 7 (DS) default $\rightarrow 0$
	0 = After a full PCI reset, a read to this bit returns a 0.
	Bit 6 (INUSE_STS) default $\rightarrow 0$
	0 = Interrupt or SMI# was not generated by SMBALERT#. This bit is only cleared by software writing a 1 to the bit position or by RSMRST# going low.
	Bit 5 (SMBALERT_STS) default \rightarrow 0
	0 = Cleared by writing a 1 to the bit position.
	Bit 4 (FAILED) default $\rightarrow 0$
	0 = Cleared by writing a 1 to the bit position.
	Bit 3 (BUS_ERR) default \rightarrow 0
	0 = Cleared by writing a 1 to the bit position.
	Bit 2 (DEV_ERR) default \rightarrow 0 0 = Software resets this bit by writing a 1 to this location. The ICH4 will
	then deassert the interrupt or SMI#.
	Bit 1 (INTR) default $\rightarrow 0$
	0 = Software resets this bit by writing 1 to this location. The ICH4 will then deassert the interrupt or SMI#.
	1 = The source of the interrupt or SMI# was the successful completion of
	its last command.
	Bit 0 (HOST_BUSY) default $\rightarrow 0$
T-	lost Control Register02h
•	Bit 7 (PEC_EN) default $\rightarrow 0$
	0 = SMBus host controller does not perform the transaction with the PEC
	phase appended.
	Bit 6 (START) default $\rightarrow 0$
	0 = This bit will always return 0 on reads. The HOST_BUSY bit in the Host Status register (offset 00h) can be used to identify when the ICH4 has finished the command.
	1 = Writing a 1 to this bit initiates the command described in the
	SMB_CMD field. All registers should be setup prior to writing a 1 to this bit position.
	Bit 5 (LAST_BYTE) default $\rightarrow 0$
	1 = Software sets this bit to indicate that the next byte will be the last

(instead of an ACK) after receiving the last byte.

	Bit 4:2 (SMB_CMD
	011 = Word Data: This command uses the transmit slave address,
	command, DATA0 and DATA1 registers. Bit 0 of the slave address
	register determines if this is a read or write command. If it is a read, after
	the command completes, the DATA0 and DATA1 registers will contain
	the read data.
	Bit 1 (KILL) default $\rightarrow 0$
	0 = Normal SMBus Host controller functionality.
	Bit 0 (INTERN) default \rightarrow 0
	0 = Disable.
Host C	ommand Register03h
110st C	This 8-bit field is transmitted by the host controller in the command field of the
	SMBus protocol during the execution of any command.
Transm	nit Slave Address 04h
	Bit 7:1 (ADDRESS) R/W \rightarrow 7-bit address of the targeted slave.
	Bit $0 \rightarrow R/W$. Direction of the host transfer.
	0 → Write / 1→ Read
Data 0	Register Address05h
	DATA0/COUNT — R/W. This field contains the eight bit data sent in the DATA0
	field of the SMBus protocol. For block write commands, this register reflects the
	number of bytes to transfer. This register should be programmed to a value
	between 1 and 32 for block counts. A count of 0 or a count above 32 will result in
	unpredictable behavior. The host controller does not check or log illegal block
	counts.
Data 1	Register Address06h
	DATA1 — R/W. This eight bit register is transmitted in the DATA1 field of the
	SMBus protocol during the execution of any command.
PCA 9554 I	Device Address:
	READ4Eh
	WRITE4Fh
Comme	and Description.
Commo	and Description:
	$0x00 \rightarrow \text{Read byte} - \text{Input Port Register}$
	0x01 → Read/Write byte – Output Port Register
	0x02 → Read/Write byte – Polarity Inversion Register
	0x04 → Read/Write byte – Configuration Register

Sample Code for reading SMB Registers in Assembly Language:

```
NEWIODELAY Macro
        out 0ebh,al
        ENDM
.model small
        .486p
        .stack 256
        .data
Data Area
SMBus_Port
               EQU 500h
               EQU 4eh ; Device address
   PCA9554_ID
               EQU 00h
   Input_Reg
   Output_Reg
               EQU 01h ; If GPIOx as output, the value
setting is effective.
   Inversion Req
               EQU 02h
               EQU 03h ;assign GPIOx as Input or
   Configure_Reg
output.
Main Program Start
.code
         org
             100h
.STARTup
         pusha
      ;1.Set GPIO 0,1,2,3,4,5,6,7 as output
        mov ch, PCA9554 ID
            cl, Configure Req
        mov
            al,00000000b
         mov
         call Ct_I2CWriteByte
;
      ;2.Set GPIO 0,2,4,6 Output Low & 1,3,5,7 Output High
        mov
            ch,PCA9554 ID
        mov
             cl,Output Req
        mov
             al,10101010b
         call
             Ct_I2CWriteByte
        popa
         .exit
```

```
;[]========[]
:Input : CL - register index
             CH - device ID
;Output : AL - Value read
;[]================[]
Ct I2CReadByte Proc Near
        push cx
        mov
             dx,SMBus_Port +04h
        inc
             ch
        mov
             al,ch
                         ;ID cmd(read)
        out
             dx,al
        NEWIODELAY
        call CT_Chk_SMBus_Ready
             ax
        pop
             dl,03h
        mov
        out
             dx,al
                         ;Index
        NEWIODELAY
             dl,02h
        mov
        mov
             al,48h
        out
             dx,al
                         ;Read data
        NEWIODELAY
        mov cx, 10h
    @@:
        newiodelay
        loop short @B
        call CT_Chk_SMBus_Ready
             dl,05
        mov
             al,dx
                         ;Data0
        in
        NEWIODELAY
        ret
Ct_I2CReadByte
            Endp
;[]=============[]
;Input : CL - register index
;
        CH - device ID
       AL - Value to write
;Output: none
;[]=============[]
Ct_I2CWriteByte Proc Near
        push ax
        push cx
             dx,SMBus_Port +04h
        mov
                      ;ID cmd(Write)
        mov
             al,ch
             dx,al
        out
        call Delay
```

```
pop
              ax
              d1,03h
          mov
          out
              dx,al
                             ; Index
          call Delay
              ax
          pop
          mov
              dl,05
          out
              dx,al
                             ;Data0
          call Delay
          mov
              d1,02h
              al,48h
          mov
          out
              dx,al
                             ;write data
          call Delay
         mov
              cx, 10h
    @@:
          newiodelay
          loop short @B
          call CT_Chk_SMBus_Ready
          ret
Ct_I2CWriteByte
             Endp
CT_Chk_SMBus_Ready Proc Near
          mov dx,SMBus_Port + 0;status port
          clc
          mov cx,0800h
Chk_SMB_OK:
          in
              al,dx
                        ;get status
          NEWIODELAY
              dx,al
          out
                        ;clear status
         NEWIODELAY
          test al, 02H
                             ;termination of command ?
          jnz
              short Clear_final
              al, NOT 40H ; mask INUSE bit
          and
          or
              al, al ; status OK ?
          jz
              short Clear_final
          test al,04h
                             ;device error
              short SMBus_Err
          jnz
          loop short Chk_SMB_OK
     ;SMbus error due to timeout
SMBus Err:
          stc
          ret
Clear_final:
```

call CT_Chk_SMBus_Ready

```
clc
    ret
CT_Chk_SMBus_Ready Endp
Delay proc near
    push cx
    mov cx, 100
  @@:
    NEWIODELAY
    loop short @B
    pop cx
    ret
Delay
   ENDP
Program END
```

END