Descriptions and use for the standardized EMAC board counter / timer drivers, 12/21/98.

In order to ease the programming of various EMAC SBCs, standardized counter / timer drivers have been written which have similar function and identical syntax on each board. Though each code file is board-specific, a user program may call these functions in the same manner on any EMAC SBC, thus increasing code portability and freeing the user to worry about his or her application instead of the hardware-specific intricacies of a particular SBC. It should be noted that these drivers can generate a considerable amount of code. It is therefore recommended that the user comment the driver functions not needed out of the portio.c file, to save space for user code. Before attempting to compile the drivers, look through the header (timedrv.h) file, and change any definitions you may need to, including the ports on your board, and the compiler you are using.

The counter / timer functions are as follows:

char Timer_Init(char timer_num, char C_or_T, char mode, char special)

This function initializes a timer “timer_num” to the given mode “C_or_T,” “mode” with the given options “special..” The “C_or_T” parameter tells the function whether to initialize the counter as a counter or a timer. Legal values for this parameter are COUNTER and TIMER. The “mode” parameter tells the function how many bits to use, and whether or not reload mode should be set. Legal values are EIGHT_BIT, SIXTEEN_BIT, EIGHT_BIT_RELOAD and SIXTEEN_BIT_RELOAD. Note that not all modes may be available on all hardware. The “special” parameter tells the function what special features of the timer to initiallize. This parameter is a bitfield, so multiple arguments may be OR’d togeather using the “|” character. Legal values include PRESCALE and GATE, among others. Check the header file for your hardware for other specials that may be available to you. Remember that specials tend to be very hardware-specific, and may not even be available across counters on the same CPU. This function returns a 0 on success.

char T_Set_Reload(char timer_num, int value)

This function sets the reload value “value” for a given timer “timer_num.” The timer should already be set to a reload mode when this function is called; calling this function on an uninitiallized timer or a timer in another mode can have unpredictable results. This function will return 0 on success.

char T_PWM_Init(char channel, int value)

This function sets up pulse width modulation (PWM) on the specified PWM channel “channel” with the compare value “value,” which sets the duty cycle. Most PWM timers function by continuously comparing “value” to a running timer. When the two match, the output pin is toggled. The pin is toggled again when the running timer rolls over. Check your hardware documentation for details on the meaning of “value.” Remember that a PWM channel may not correspond to the timer of the same number; several PWM channels may use the same running timer. This function returns 0 on success.

char T_PWM_Reset(char channel, int value)

This function changes the PWM duty cycle for the given PWM channel “channel” by changing the compare value to “value” on the fly, without stopping the running timer or re-initializing. See your hardware documentation for more on the precise meaning of “value.” This function returns 0 on success.

char T_Capture_Init(char channel, cap_mode)

This function sets up a timer capture on the capture channel “channel,” with the capture mode “cap_mode.” Depending on your hardware, captures may be triggered by hardware or software. Legal values for “cap_mode” are HARDWARE and SOFTWARE. HARDWARE mode captures are triggered by a voltage applied to an external pin; check your hardware documentation for details. If necessary, this function also sets the external pin to input mode. This function returns 0 on success.

int T_Read_Timer(char timer_num)

This function determines whether a timer “timer_num” is in 8 or 16-bit mode, then returns the current value of that timer. Note that there will be some latency in the reading while the function determines the timer’s mode. If more accurate readings are desired, the T_Stop_Timer() function may first be used to halt the timer before reading.

int T_Read_Capture(char channel)

This function returns the value of the last capture performed on capture channel “channel” as a 16-bit integer. Note that if a capture has not been performed on the specified channel, the return value will be indeterminate.

char T_Config_INT(char timer_num, char enable)

This function enables or disables the interrupt for a timer “timer_num” according to the parameter “enable.” Legal values for “enable” are ENABLE and DISABLE. The function will also enable global interrupts if necessary. It will not, however, disable global interrupts. The function will also clear a pending interrupt before enabling that interrupt, to prevent immediate interrupting. Only the interrupt and interrupt request flag for the specified channel will be affected. This function returns 0 on success.

The counter / timer macros are as follows:

T_Start_Timer(tnum)

This macro starts a timer “tnum.” As this macro was designed for speed of execution, it will start a timer regardless of whether or not it has been initialized. This macro returns a void; any attempt at assigning this function will be met with compiler errors.

T_Stop_Timer(tnum)

This macro stops a timer “tnum,” in the same manner as T_Start_Timer() starts it. Note that stopping some timers may also destroy the mode information. This macro’s return value is void.

T_Capture(channel)

This macro triggers a software capture on the specified capture channel “channel.” Check your hardware documentation for which counter / timer is captured This macro’s return value is void.

Macros were used to accomplish these three functions due to the fact that time-critical applications can often the several instruction latency that a function would require. Optimizing compilers will fold the constants during compilation, usually generating a single assembly language statement for these macro functions. Other compilers will perform the comparisons in these macros – users with non-optimizing compilers who wish to eliminate this latency should write their own timer start, stop, and capture commands. Note that as macros don’t do any type checking in and of themselves, they can behave erratically when passed unexpected data types. These can cause compiler errors which are very difficult to track down.

The functions for external (not on-CPU) timers / counters use memory-mapped I/O (MMIO). During these operations, to prevent race conditions caused by inopportune interrupts, all MMIO functions are performed atomically, meaning that interrupts are disabled during these operations. In the worst-case, this can add several instructions worth of latency to interrupt response time (in some cases, a maximum of one ANL, one SETB, one CLR, three MOV, and three MOVX statements.)

Return error conditions:

Value

Error [functions valid for]

0xF8

Illegal capture mode requested [T_Capture_Init()]

0xF9

Channel already in use for specified mode [T_PWM_Init()]

0xFA

Illegal channel specified [all channel-specific functions]

0xFB

Illegal reload value specified [T_Set_Reload()]

0xFC

Illegal timer number specified [all timer-specific functions]

0xFD

Special not available for given timer and mode [Timer_Init()]

0xFE

Illegal mode requested [Timer_Init()]

Hardware-specific notes on the standardized counter / timer drivers for the uP535:

Start, Stop and Capture trigger: These macros had to be defines as functions when using Dunfield C, due to several compiler quirks. This can add several instructions’ worth of latency between the calling of the function and the actual operation on the timer registers. If very precise timing is required, it is recommended that the user perform these functions manually when using Dunfield C.

Timers 0 and 1: Timers 0 and 1 are 16-bit registers. When in reload mode, the reload value occupies one of the two bytes of the timer register, preventing 16-bit reload operation. The timer 0 and 1 prescaler is divide-by-5. This causes “8-bit-reload” mode to use 13 bits.

Timers 0 and 1 also have a special mode in which the two 16-bit counters act as two 8-bit counters and 1 16-bit counter. This mode is too complex for generic drivers to control, but may be configured manually if required. Consult the 80535 documentation for details.

Timer 2: Timer 2 is a 16-bit counter with a separate register to hold a 16-bit reload value. Eight-bit modes are not available for timer 2, but they may be simulated by setting timer 2 into reload mode and setting the lower reload byte to 0xFF. The timer 2 prescaler is divide-by-2. Compare / capture channel 0 is used to hold the timer 2 reload value when the timer is in reload mode. This prevents the user from configuring compare, capture, or PWM functions on channel 0 when timer 2 is in reload mode.

Timer 2 cannot use the gate special when in counter mode.

Timer 3: Timer 3 is on the external DUART chip. If you do not have this option installed, you cannot use this timer. Before using the functions on this chip, you must initialize it by first setting, then clearing port 5, pin 5 (P5.5). The driver functions do not do this because such a reset would destroy any other configurations (serial or I/O, for example) which a user program may have put into place.

Timer 3 operates very differently from the internal timers, and the modes “counter” and “timer” do not hold the same meaning for this timer (though the terms are kept for consistency with the SC26C92 documentation.) The “counter” mode acts as the other timers would in “timer” mode, and T3 “timer” mode functions as a clock, producing a regular square wave (if programmed to do so manually.) It is recommended that you read the DUART hardware documentation before using this timer.

Timer 3 has no gate special, and only has prescale in timer mode. The timer 3 prescale is divide-by-16.

Note that using the T_Config_INT() function on timer 3 will destroy the configuration of any other DUART interrupts which you may have configured through another function. If you are using other interrupts on the DUART, it is recommended that you configure the timer interrupt manually.

Capture mode: The capture functions will always capture the value of timer 2.

