Descriptions and use for the standardized EMAC board serial drivers, 12/9/98.

	In order to ease the programming of various EMAC SBCs, standardized serial drivers have been written which have similar function and identical syntax on each board. Though each code file is board-specific, a user program may call these functions in the same manner on any EMAC SBC, thus increasing code portability and freeing the user to worry about his or her application instead of the hardware-specific intricacies of a particular SBC. It should be noted that these drivers can generate a considerable amount of code. It is therefore recommended that the user comment the driver functions not needed out of the serdrv.c file, to save space for user code. Before attempting to compile the drivers, look through the header (.h) file, and change any definitions you may need to, including the number of channels your board has available, and the compiler you are using.

The serial functions are as follows:

int Serial_Init(char channel, char mode, int baud, char snd_en, char rcv_en, char snd_int, char rcv_int);

	This function initializes the given serial channel. The mode (EIGHT_BIT, NINE_BIT, SHIFT_REGISTER) is set, along with the baud rate. The remaining parameters configure the transmit and receive enable for the given channel, and the channel’s interrupt initialization. The parameter “snd_en” controls transmit enable, “rcv_en” controls receive enable, “snd_int” controls the transmit interrupt, and “rcv_int” controls the receive interrupt. Writing a TRUE symbol (ON or any non-zero value) will initialize that function to on, and a FALSE symbol (OFF or 0) will initialize it to off. This function will return 0 on success. See error code listing for other possible return values.

char Ser_SNDRCV_Enable(char channel, char snd, char rcv);

	This function enables or disables the hardware transmitter and/or receiver of the specified channel, depending on the parameters “snd” and “rcv.” If the “snd” parameter is TRUE, the transmitter will be enabled. If “snd” is FALSE, the transmitter will be disabled. Similarly, the receiver will be enabled if “rcv” is TRUE, and disabled if it is FALSE. It should be noted that not all hardware fully supports such enabling/disabling, check the hardware-specific portion of this file for details. When applicable, this function disables the RS-422 protocol transmit enable prior to making changes in the hardware configuration (even if no change in the transmit configuration is being made.) This function will return 0 on success. 		

				

char Ser_Config_Int(char channel, char send, char receive);

	This function enables or disables the transmit and/or receiver interrupts of the specified channel, depending on the parameters “send” and “receive.” If the “send” parameter is TRUE, the transmit interrupt will be enabled. If “send” is FALSE, the transmit interrupt will be disabled. Similarly, the receive interrupt will be enabled if “receive” is TRUE, and disabled if it is FALSE. It should be noted that not all hardware fully supports such enabling/disabling, check the hardware-specific portion of this file for details. Note that while this function will enable global interrupts when necessary, it will never disable interrupts globally, so as not to interfere with other device configurations. Thus, even if no non-serial interrupts have been enabled and you disable both send and receive interrupts for all serial channels, the global interrupt enable will remain set. This function will return 0 on success.

char Ser_Block_Send(char channel, char sendta);

	This function will block until space is available in the transmission queue, then place the byte “sendta” into the queue. The function will then block, not returning until the byte has been sent. This function will return 0 on success.

 		

char Ser_Send_Byte(char channel, char sendta);

	This function will block until space is available in the transmission queue, then place the byte “sendta” in the transmit queue and return immediately. This function will return 0 on success.

	 		

char Ser_Receive_Byte(char channel); 		

	This function will block until a character is available in the specified channel’s receive queue, then return that byte. Due to hardware, this will usually also clear the status bits associated with the byte received. It is therefore recommended that user software check the receiver status before calling this function. Check the hardware-specific portion of this file for details. This function will return the character received on success.

char Ser_SND_Done(char channel);

	This function checks to see if the transmit queue is empty for the specified channel. This function will return 0x01 if the queue is empty (all transmit operations are complete,) and 0 if there are still characters waiting to be transmitted.

				

char Ser_RCV_Done(char channel);

	This function checks to see if there is a character available in the received queue of the specified channel. This function will return 0x01 if there is a character available, and 0 if there is not.

char Ser_Set_Status(char channel, char status);

	This function sets the status of the various 9-bit functions and modes available on the specified channel. Defined status parameters are: EVEN_PARITY, ODD_PARITY, FORCE_ZERO, FORCE_ONE, NO_PARITY, MULTIDROP_ADD, and MULTIDROP_DATA. The first two settings will set the channel to nine-bit mode, automatically generating and decode even or odd parity, respectively. The next two “FORCE” parameters set the specified channel to nine-bit mode, with the ninth bit of each transmitted byte set to zero or one, respectively. The “NO_PARITY” parameter will set the specified channel to standard eight-bit mode, with no parity generation or recognition. The two multidrop modes will set the specified channel to nine bit, multidrop (auto wakeup) mode. The “MULTIDROP_ADD” parameter will cause the ninth bit of any bytes transmitted to 1, designating it as an address byte. The “MULTIDROP_DATA” parameter will cause the ninth bit of transmitted bytes to be 0, designating these bytes as data bytes. Note that not all hardware supports all of these modes, check the hard-specific section of this file for details. This function will return 0 on success.				

char Ser_Read_Status(char channel);

	This function returns a bitfield containing the status of the specified channel. Note that not all channels recognize or generate all of the conditions this function recognizes. See the hardware-specific portions of this file for details. The meaning of the returned bitfield is as follows:

[MSB]		BIT 7	RECEIVED BREAK

 		BIT 6	FRAMING ERROR

 		BIT 5	PARITY ERROR	 (9th bit polarity in multidrop mode)

 		BIT 4	OVERRUN ERROR

 		BIT 3	NOT USED (0)

		BIT 2	NOT USED (0)

 		BIT 1	NOT USED (0)

[LSB]		BIT 0	NOT USED (0)

				

char Ser_Set_Handshake(char channel, char hand_status);

	This function will set the handshake line for the specified channel ON or OFF. When the specified channel has been defined as RS-422, then a TRUE value (1 or ON) for “hand_status” will cause the RS-422 protocol transmit enable to be enabled. Similarly, a FALSE value (0 or OFF) will cause the protocol transmit enable to be disabled on an RS-422 channel. This function will return a 0 upon success.

		

char Ser_Read_Handshake(char channel);	

	On success, this function returns the sense of the handshake line for the specified channel, to allow software handshaking. Note that this function will not return an error when used on an RS-422 channel, but will return instead invalid data.

			

Return error conditions:

Value		Error [functions valid for]

0x02		Channel out of range [Serial_Init()]

0x03		Invalid mode specified for COM0 [Serial_Init()]

0x04		Invalid mode specified for COM1 or COM2 [Serial_Init()]

0x05		Unsupported baud rate for COM1 or COM2 [Serial_Init()]

0x06		Unsupported function requested [Ser_Set_Status()]

0xFF		Invalid channel specified [all functions]

Hardware-specific notes on the standardized serial drivers for the uP535:

Initialization: This function sets the mode and baud rate for the given channel, as well as send/receive and interrupt enable/disable. As there is no function to set baud rate for a channel, this function should be used to change baud rate. For COM0, only the following baud rates are supported: 1200 2400 9600 19200. Other baud rates may be achieved by manually setting the reload value for internal timer 1. For COM1 and COM2, only the following baud rates are currently supported: 1200 2400 4800 9600 19200. When using RS-422, the RS-422 protocol’s special transmit enable will be inactive at the end of the initialization routine. It should be enabled (as needed) with the Ser_Set_Handshake() function.

To use COM1 or COM2, you must first reset the external DUART. This reset should be performed only once after power-up. The init function does not perform this reset, as such a reset would interfere with timer and digital I/O operations which are also performed on the external DUART. To perform this reset yourself, set port 5, pin 5 high, then low. (In assembly, SETB 5.5 followed by CLR 5.5).

Nine-bit mode: If used on any channel in EIGHT_BIT mode, the read 9th bit function will return whatever (invalid) data it finds and return it as if valid. When reading 9-bit data from COM1 or COM2, the user program must read the 9th bit (via Ser_Read_Status) before reading the character itself, as the DUART chip discards the status bits when the associated byte is read from the FIFO. When using COM0, the 9th bit will be valid from the time the byte is received until the next byte is fully received, however it is recommended that the user program read the 9th bit first to maintain compatibility.

Multidrop mode: When in multidrop mode, COM1 and COM2 will still receive bytes if the 9th bit of the incoming byte is set to 1, even when the receiver is disabled. Such reception will set all flags and interrupts as if the receiver had been enabled. COM1 and COM2 will receive all bytes normally when their receiver is enabled in multidrop mode.

Send/receive enable/disable: For COM0 RS-232, send is always enabled, and enabling send does nothing, returning success. When using RS-422 on COM1 or COM2, the send enable function enables the SC26C92 on-chip transmitter, but not the special RS-422 transmit enable. The send disable function for RS-422 disables both the on-chip transmitter and the special RS-422 send function. If you only wish to enable or disable the special RS-422 transmit enable, without affecting the chip’s transmitter, the Ser_Set_Handshake() function will accomplish this.

Interrupt enable/disable, COM0: For the 80535 internal serial port COM0, the same interrupt enable bit is used for both transmit and receive interrupts. Thus, enabling one enables both, and disabling one disables both. The only functional difference is that if the transmit interrupt is enabled, the TI bit will left as is, thus causing an immediate interrupt (unless a character is being sent). If only the receive interrupt is enabled, the TI bit will cleared, averting an immediate interrupt. The first byte of a transmission may then be sent manually. However, a serial interrupt will be generated after this and each subsequent character is sent. User software must read bits RI and TI in the SCON register to determine whether an interrupt is a transmit or receive interrupt.

Interrupt enable/disable, COM1 and COM2: For the external DUART ports COM1 and COM2, the transmit and receive interrupts may be enabled and disabled independently. Note that any COM1 or COM2 interrupts will trigger only the 8051's external interrupt 0 (IE0), and the user's COM1 and COM2 serial interrupt service routine vector must be located where the EI0 vector would normally be placed. The user software must read the SC26C92's internal Interrupt Status Register (ISR) to determine the source channel of the interrupt, and whether it was a transmit or receive interrupt. COM1 and COM2 will both generate transmit interrupts immediately upon enabling of the transmit interrupt, unless there are characters waiting to be sent in the transmit buffer.

All operations on COM1 and COM2 are done atomically, meaning that interrupts are disabled during the reads and writes to the external DUART. This can add up to two MOV instructions and one MOVX instruction to the maximum possible interrupt latency.

Byte send and receive: The SC26C92 has eight-byte send and receive buffers. Ser_Send_Byte() merely makes sure that there is room in the send buffer, then writes the byte to the buffer and returns. Ser_Block_Send() checks for space in the send buffer, writes the character to the buffer, then waits until the entire buffer is empty before returning. Thus, Ser_Block_Send() may take as much time as it takes to send eight bytes at your mode and baud rate. Ser_Receive_Byte() returns the first byte in the receive buffer, or if there is no data present, waits until a byte is received, then returns. Note that the 805335 internal serial port (COM0) has a single byte input buffer, thus forcing the user software to read one byte before the next one is received to prevent data loss. The driver routine software prevents premature write errors to COM0 by blocking until the previous byte has been sent.

Set/Read Status: The 80535 on-board UART does not support any sort of hardware parity generation or checking. Any request for parity on COM0 via the Ser_Set_Status() function will return an error. COM0 also does not detect breaks, framing errors, or buffer overruns. When used on COM0, the value returned by the Ser_Read_Status() function will contain only a single valid bit, in the PARITY ERROR position. This bit will contain the sense of the ninth bit received when COM0 is in nine-bit mode, and invalid data when the UART is in eight-bit mode.

Set/Read Handshake: While this functions as expected for RS-232 channels, the set handshake function will enable or disable the RS-422 protocol transmit enable function, which is disabled by default even after enabling the hardware transmitter. The read handshake will also function for channels set to RS-422, though the data may be invalid due to the nature of the protocol.

Notes on COM0: The 80535 internal serial port COM0 uses the CPU’s internal timer/counter 1 to generate its baud rate. Any alteration of timer 1’s count, reload value, mode, or interrupt configuration by any means will most likely ruin your baud rate settings, causing lost data and requiring re-initialization of the port.

Notes on COM1 and COM2: The SC26C92 offers far more functionality than the on-CPU serial port, COM0. These functions include hardware handshaking, many more baud rates, a watchdog timer, and user-determined buffer fill levels to generate interrupts. These are not supported in the driver functions for the sake of standardization. Further information on these functions is provided in the uP535 manual and the SC26C92 data sheet.

Due to the use of memory mapped I/O (MMIO,) the driver functions access the SC26C92 via a pointer (ex_ser_ptr, declared at the top of serdrv.c.) During MMIO operations, the external data memory from 0000h – 7FFFh is used by MMIO devices, and any data stored there is inaccessible. Thus, the pointer must be stored either in on-chip RAM, or in an external RAM address at address 8000h or above. This will only be a problem when your board jumpers are set in the 64-128k EPROM/FLASH configuration (disabled shared program/data memory,) and in particular when using the LARGE memory model which in many compilers ignores on-chip RAM. If this is the configuration your application uses, care must be taken to explicitly place the ex_ser_ptr in memory which will be accessible during MMIO operations.

