Descriptions and use for the standardized EMAC board Serial EEPROM drivers, 12/28/98.

In order to ease the programming of various EMAC SBCs, standardized Serial EEPROM drivers have been written which have similar function and identical syntax on each board. Though each code file is board-specific, a user program may call these functions in the same manner on any EMAC SBC, thus increasing code portability and freeing the user to worry about his or her application instead of the hardware-specific intricacies of a particular SBC. It should be noted that these drivers can generate a considerable amount of code. It is therefore recommended that the user comment the driver functions not needed out of the seedrv.c file, to save space for user code. Before attempting to compile the drivers, look through the header (seedrv.h) file, and change any definitions you may need to, including the ports on your board, and the compiler you are using.

The SEEPROM functions are as follows:

int SEE_Read(unsigned char address)

This function will read and return the 16 bits of data at address “address” from the SEEPROM. As the SEEPROM is non-volatile memory, this will be the last value written to that address, regardless of how long the device has been powered down or how many resets have been performed. If the data at “address” has been erased, the data contained there will be 0xFFFF. Provided “address” is valid, SEE_Read() will succeed regardless of whether or not the device is write / erase enabled.

char SEE_Write(unsigned char address, int seedata)

This function will write the 16 bits of data “seedata” to the SEEPROM address “address.” This operation will only affect the data in the SEEPROM if the chip has first been write enabled (via the SEE_Write_Enable() function). The device is write-disabled by default. If the device is not write-enabled, this function will appear to succeed, but no data will be written to the SEEPROM. This function returns a 0 on success.

It should be noted that while the SEEPROM may be read an unlimited number of times, it is only capable of a limited number of read /erase operations (generally, one million). Thus, it is not recommended that the device be used as standard memory, but rather to store configuration information or other such data which requires non-volatile storage, but does not change often.

char SEE_Write_Enable(void)

This function sets the SEEPROM hardware to allow write and erase operations. It is recommended that the user program call this function just before performing a write operation, and that the SEE_Write_Disable() function be called immediately after the write operation. This function will return a 0 on success.

char SEE_Write_Disable(void)

This function is the reverse of the SEE_Write_Enable() function. This functions sets the SEEPROM hardware to disable write / erase operations. (This is the default post-initialization state of the hardware.) After this function is called, no write, write all, erase, or erase all function call will have any affect on the data in the SEEPROM until the SEE_Write_Enable() function is called. This function will return a 0 on success.

char SEE_Erase(unsigned char address)

This function will erase the data in the SEEPROM at address “address,” provided the address is valid and the device is write-enabled. The data at ‘address” will be set to 0xFFFF, which is the default / blank state for the device. Note that due to the nature of the device, this function may take a few milliseconds to execute; see the hardware-specific portions of this document for details. This function will return a 0 on success.

char SEE_Erase_All(void)

This function will erase every value in the SEEPROM, setting each to 0xFFFF. This function will only affect the SEEPROM data if the device has been write enabled. Note that due to the nature of the device, this function may take several milliseconds to execute. This function will return a 0 on success.

char SEE_Write_All(int seedata)

This function will write the 16 bits of data “seedata” to every address in the SEEPROM. This function will only affect the SEEPROM data if the device has been write-enabled. Note that due to the nature of the device, this function may take several milliseconds to execute. This function will return a 0 on success.

char SEE_Burst_Read(unsigned char startaddr, char num, int *buffer)

This function will sequentially read “num” 16-bit words of data starting at address “startaddr,” provided that the entire range of addresses is valid. The data will be stored in the integer array *buffer (this is equivalent to buffer[]). This buffer must be declared in the user’s program. For example, “int databuffer[MAXVALS]” would be a valid array. Any array name may be used, and MAXVALS should be replaced with the maximum number of integers to be read. Note that the function does not check if the array is long enough to hold all of the requested data. Thus, if an array with insufficient storage space is passed to the function, the function will continue to write past the end of the array, probably overwriting other data and possibly crashing the program. Any number of integers may be read with a single call to this function, up to the total number of address in the device. This function returns a 0 on success.

Return error conditions:

Value

Error [functions valid for]

0xFD

Starting address out of range [SEE_Burst_Read()]

0xFE

End address out of range [SEE_Burst_Read()]

0xFF

Address out of range [SEE_Read(), SEE_Write(), SEE_Erase()]

Hardware-specific notes on the standardized SEEPROM drivers for the uP535:

Hardware: The uP535 uses a Microchip© 93C46B SEEPROM, which has 64 16-bit addresses, numbered 0x00 through 0x3F. The 93C46B is guaranteed for one million erase / write cycles, with data retention greater than 200 years. This SEEPROM requires 2 ms to perform a write or erase operation, 6 ms to perform an erase-all operation, and 15 ms to perform a write-all operation. For more information on device endurance, see the Microchip© website at http://www.microchip.com.

The uP535 uses the same line to select the SEEPROM chip as it uses to select / deselect Memory-Mapped I/O (MMIO). The 93C46B cannot have the chip deselected during any operations. Thus, interrupts are disabled during each of the SEEPROM functions, to prevent interrupts which may use MMIO. Note that this may add several milliseconds of latency to pending interrupts, especially when using the erase-all or write-all functions. These operations should be carefully placed in user code to minimize the effects of such latency.

Presently, these device drivers do not block until a write operation is finished. This allows user code to begin a new operation before the previous one is completed, causing unpredictable results. It should also be noted that the output at pin DO does not always match the output specified in the SEEPROM hardware documentation, in particular following a write / erase operation and when returning to the HI-Z state. This does not, however, affect the functionality of the driver functions.

