Descriptions and use for the standardized EMAC board real-time clock drivers, 1/5/99.

In order to ease the programming of various EMAC SBCs, standardized Real Time Clock (RTC) drivers have been written which have similar function and identical syntax on each board. Though each code file is board-specific, a user program may call these functions in the same manner on any EMAC SBC, thus increasing code portability and freeing the user to worry about his or her application instead of the hardware-specific intricacies of a particular SBC. Before attempting to compile the drivers, look through the header (rtcdrv.h) file, and change any definitions you may need to.

The Real-Time Clock functions are as follows:

void RTC_Read(char *buff)

This function reads the data in the real-time clock, returning it in the character array “*buff”. This array must be defined by the user program prior to using this function call. The “*buff” argument (equivalent to “buff[]”) should be defined as an array of at least 8 chars, preferably unsigned. When this function returns, “buff[0]” through “buff[7]” will contain the raw data from the real-time clock registers, in Binary-Coded Decimal format. The specific data format is listed below.

void RTC_Write(char *buff)

This function takes the data in “buff[0]” through “buff[7]” and writes it directly to the registers of the real-time clock. The exact format is listed below. Note that the data in “*buff” may be modified by the function. When using 12-hour format, AM and PM may be specified by logical-OR’ing the values “AM” or “PM” with the hour value (“buff[4]”). If neither AM nor PM is specified, the clock will be set to 24-hour mode, and hour values up to 24 may be specified. The clock’s internal oscillator may also be disabled by OR’ing the value “OSC_OFF” with the day of the week value (“buff[3]”). By default, writing to the clock enables the oscillator. The clock will only run when the oscillator is enabled.

Buffer Format:

For users familiar with the internals of the real time clock, the buffer values are reversed from the clock register order. Thus, the data to / from clock register 0 should be placed into / read from buff[7], and data to / from clock register 7 should be placed into / read from buff[0]. For clarity, the format is given in terms of buff[].

buff[0] contains the last two digits of the year in Binary-Coded Decimal (BCD). Each nibble of the byte contains 1 BCD digit. The year ’72 would be specified as 0x72, or 72 hex. 72 decimal (48 hex) would be interpreted as the year ’48.

buff[1] contains the month number in BCD. January would be specified as 0x01, October as 0x10, and December as 0x12.

buff[2] contains the date (day of the month) in BCD. The first of the month is specified as 0x01, and the 30th as 0x30.

buff[3] contains the day of the week. Zero through 0x07 are legal values. This is also the value which contains the bit to enable or disable the clock’s internal oscillator (bit 5). Enabled with each write by default, the oscillator may be disabled by logical-OR’ing the day of the week value with “OSC_OFF”. This value also contains the reset disable bit (bit 4), which will always be set to 1 due to the hardware design of the boards. When reading the day of the week, the value read from buff[3] should be logical-AND’ed with 0x0F to remove these two control bits.

buff[4] contains the hour in BCD, in either 12- or 24-hour format. Bit 7 is the 12/24 hour control. A one at this bit means the clock is in 12-hour mode. When in 12-hour mode, bit 5 is the AM/PM bit, with high being PM. In 24-hour mode, bit 5 is the second 10-hour bit (20-23 hours).

buff[5] contains the minutes value, in BCD.

buff[6] contains the seconds value, in BCD.

buff[7] contains the hundredths of a second value, in BCD. Note that consecutive hundredths of a second cannot be read, due to the timing constraints of the device.

For further information, see the hardware documentation for the Dallas Semiconductor DS1216.

Notes:

The Real-Time Clock shares a socket with the board’s RAM. During RTC operations, no read or write operations to the RAM can take place. Such operations destroy the pattern recognition needed to activate the RTC, and interrupt the data transfer to and from the RTC. As such, the RTC access functions will not function when executed from RAM; writes to the RTC will fail and reads from the RTC will return all 0’s or all 1’s depending on the data in the scratchpad RAM location. This means that the RTC driver functions will not operate correctly when used with any sort of monitor program.

Due to the hardware configuration, assembly language routines were used to access the real-time clock. However, these assembly language routines were designed to be called from C as if they were standard C functions. Where possible, the assembly functions have been inlined into C-code files, allowing the drivers to be used exactly as any of the other standardized drivers would be used. In other cases, the only thing changed is the extension of the code file to include in your project. See the hardware-specific portion of this document for details.

Also due to hardware configuration, interrupts must be disabled during clock access functions. This can cause very long interrupt response latencies, in excess of 2000 machine cycles. The user may minimize the effect of these latencies only by careful placement of RTC access calls.

Return error conditions:

Value

Error [functions valid for]

None defined

Hardware-specific notes on the standardized Real-Time Clock drivers for the uP535:

Dunfield compiler: The Dunfield compiler allows inline assembly language in C programs, and compiles such code with no extra effort on the part of the user. Thus, the assembly language drivers have been turned into inline C code, and may be included and used just as with any other standardized driver.

Keil compiler: The Keil compiler requires extra user intervention when using inline assembly. Thus, the drivers have been left in assembly language. The only change this makes for the user is that instead of including the rtcdrv.c file in the user project, the rtcdrv.a51 file should be included instead.

