Descriptions and use for the standardized EMAC board digital I/O drivers, 12/15/98.

In order to ease the programming of various EMAC SBCs, standardized digital I/O drivers have been written which have similar function and identical syntax on each board. Though each code file is board-specific, a user program may call these functions in the same manner on any EMAC SBC, thus increasing code portability and freeing the user to worry about his or her application instead of the hardware-specific intricacies of a particular SBC. It should be noted that these drivers can generate a considerable amount of code. It is therefore recommended that the user comment the driver functions not needed out of the portio.c file, to save space for user code. Before attempting to compile the drivers, look through the header (portio.h) file, and change any definitions you may need to, including the ports on your board, and the compiler you are using.

The I/O functions are as follows:

IO_Read_Pin(pinnum)

This macro will return the value of a pin “pinnum” if that pin is located on the processor, or call and return the value of the IO_Read_EX_Pin() function if I/O pins on an external chip are defined in the header file and the parameter “pinnum” is one of the defined external I/O pins. The parameter “pinnum” must be one of the pin names defined in the header file, in the either form P4_2 for on-chip pins or the form IP6 for off-chip pins. The return value is an unsigned char. Note that this macro will return the value being applied to the pin of the port masked by the port register, and not the value contained in the port latch.

IO_Set_Pin(pinnum, value)

This macro will set the value of a pin “pinnum” equal top a value “value” if that pin is located on the processor, or call the IO_Set_EX_Pin() function with “pinnum” and “value” as its parameters if I/O pins on an external chip are defined and the parameter “pinnum” is one of the defined external I/O pins.. The function will return “value” in the first case, and the return value of IO_Set_EX_Pin() in the second case. The return value is an unsigned char.

IO_Toggle_Pin(pinnum)

This macro will invert the polarity of a pin “pinnum,” either by simple macro substitution or, in the case of external pins, by calling the function IO_Toggle_EX_Pin(). Not that this may not be a valid operation on some external I/O pins due to hardware constraints. This function will return unsigned char 0x00 on success for internal I/O pins, and the char return value of IO_Set_EX_Pin() for external pins.

IO_Read_Port(port)

This macro will check if the specified parameter “port” has been defined as a high-drive output port (incapable of input operations.) If so, the function will return an unsigned int error. Otherwise, the macro will return the value contained in “port” as an unsigned char. Note that this will return the value being applied to the pins of the port, masked by the settings of the port register.

IO_Set_Port(port, value)

This macro will set the value of the port “port” to the value “value.” Upon success, this macro will return the unsigned char 0x00.

IO_Set_Input(port, mask)

This macro configure various bits of the port “port” as inputs, depending on the value in “mask.” For each bit in “mask” set to one, the corresponding bit in “port” will be configured as an input pin. Bits set to 0 in “mask” will not be altered in “port.” This function will return 0 on success.

char IO_Read_EX_Pin(char portpin)

This function will read and return the value of the external pin “portpin,” provided that pin exists and has been defined in the header file. This function is called internally by the macro IO_Read_Pin(), but may also be used by user code if the parameter “portpin” will always be an external pin. Note that this function will not be included in compiled code if an external I/O source has not been defined. Also note that this function will return non-zero, but not necessarily 1, if the bit read is a 1.

char IO_Set_EX_Pin(char portpin, char value)

This function will set the external pin “portpin” to the value “value,” provided that pin exists and has been defined in the header file. This function is called internally by the macro IO_Set_Pin(), but may also be used by user code if the parameter “portpin” will always be an external pin. Note that this function will not be included in compiled code if an external I/O source has not been defined.

char IO_Toggle_EX_Pin(char portpin)

This function will get the value of an external pin “portpin” (sometimes by keeping a local copy,) and invert its polarity by calling the function IO_Set_EX_Pin(). Though this function is designed to be called by the IO_Toggle_Pin() macro, it may be called by other (user) programs for instance when it I known that an external pin will always be modified. This function will return 0 on success (from the IO_Set_EX_Pin() function).

char IO_INT_Config(char enable, char disable, char transition, char level, char p_polarity, char n_polarity)

This function configures the interrupts associated with some of the digital I/O pins. Each argument to this function is a bitfield. For ease of use, bits have been pre-defined in the header file. Thus, each parameter for this function may be specified as these definition identifiers OR’d togeather. For example, “EX1|EX5|EX6” is an acceptable value for any of the parameters, as is “EX0”. Interrupts specified in the “enable” bitfield will be enabled, and those specified in the “disable” parameter will be disabled. A 0 in any position in a bitfield will specify no change to the associated interrupt. Interrupts specified in the “transition” parameter will be set as transition-activated (where hardware allows,) and those interrupts specified in the “level” parameter will be level-triggered. Finally, those interrupts specified in “p_polarity” will be triggered by positive values (a 1 for level-activated interrupts, a 0-to-1 transition for transition-activated interrupts), and those specified in “n_polarity” will be triggered by negative vales. Note that not all interrupts support all of the available modes. This function will enable global interrupts when necessary (any time the “enable” bitfield is non-zero). It will not, however, disable global interrupts under any circumstances. The function will clear a pending interrupt before enabling it, preventing immediate interrupts. This function will return 0 upon success.

Notes: Macros were used instead of functions due to the complexities of passing special function registers as function parameters. Despite the seemingly complex macro substitutions, using the macros for on-chip I/O usually compiles down to a single machine instruction, the compiler having done most of the comparisons and left them out of the assembly code.

Note that as macros don’t do any type checking in and of themselves, they can behave erratically when passed unexpected data types. These can cause compiler errors which are very difficult to track down.

The functions to read and write to external pins and ports use memory-mapped I/O (MMIO). During these operations, to prevent race conditions caused by inopportune interrupts, all MMIO functions are performed atomically, meaning that interrupts are disabled during these operations. In the worst-case, this can add two move, two set/clear bit, and one movx instruction to interrupt latency.

Return error conditions:

Value

Error [functions valid for]

0xF7

Illegal pin specified [IO_Read_EX_Pin()]

0xFB

Illegal pin specified [IO_Toggle_Pin()]

0xFC

Attempt to set input pin [IO_Read_EX_Pin()]

0xFD

Attempt to read output pin [IO_Set_EX_Pin()]

0xFE

Attempt to toggle input pin [IO_Toggle_EX_Pin()]

[The following three are bitfield values; the high nibble will be 0xF, the lower nibble will contain one of more of the following]

0x1

Level mode not available for specified pin [IO_INT_Config()]

0x2

Positive polarity not available for specified pin [IO_INT_Config()]

0x4

Negative polarity not available for specified pin [IO_INT_Config()]

Hardware-specific notes on the standardized digital I/O drivers for the uP535:

Dunfield C: The Dunfield compiler has several issues with complex macros, including some of the operations which make the type conversions between types char and sfr work with the Keil compiler. As such, function workarounds were required for the IO_Read_Pin(), IO_Set_Pin(), and IO_Toggle_Pin() macros. These functions add some overhead, in both time and code space. However, they do allow user programs to use the same interface regardless of compiler or platform. These functions can also add greatly to the interrupt latency in the functions for accessing external data. If the user program is tightly constrained by time of code space, however, the user may wish to set bits manually using the XPn_m definitions. These functions also add the following error codes:

Value

Error [functions valid for]

0xF8

Illegal pin specified [Dunfield IO_Read_Pin()]

0xF9

Illegal pin specified [Dunfield IO_Set_Pin()]

Pin names: The macros should be called by parameters of the form P4_1, etc. However, these should not be utilized by other user code as assignable variables, as all identifiers of this form are defined as char constants equal to their address in the header file (due to the intricacies of passing SFRs as parameters.) While P0, P1…P5 are still valid, user code should use the identifiers XP0_0…XP5_7 to identify bits when not using the I/O macros / functions. Remember that for the 80C535, using the char constants Pn_m as pointers to access SFRs will access the upper 128 bytes of internal memory instead. Note that not all pin names are defined as XPn_m – many pins are used by other hardware and should never be set by user software, and these have not been defined. If in doubt, check the header file to see if the bit in question has been defined.

Read port and read pin: The 8051 has a feature which allows users to mask the inputs they do not wish to read. When a 0 is written to a bit in a port latch (by IO_Set_Pin() or IO_Set_Port(), or by any other means,) then a 0 will always be read for that bit, regardless of the value being applied to the pin externally. To read a value being applied externally, a 1 must be written to the corresponding bit in the port latch.

Interrupt configuration: For interrupts EX0 and EX1, the identifiers IEX0 and IEX1 must be used when passing bitfield parameters to the function, due to the compiler’s pre-definition of EX0 and EX1 as special function register bits. The external interrupt pins have several mode restrictions, as follows: For EX0 and EX1, only “n_polarity” mode is available. EX2 and EX3 have only “transition” mode available. For EX4-EX6, only “p_polarity, “ “transition” mode is available.

External I/O: External I/O pin (I/O pins not on the processor chip) are located on the external DUART chip (SC26C92) on the uP535 board. If you have this option installed, leave the line “#define EX_DUART” in the header file. If you do not have this option, comment out the line.

Before the DUART I/O pins can be used, the DUART chip must be reset. A reset must be performed only once after power-up, as a reset clears serial and timer control registers, and would disrupt these functions if they were already in progress. Before using the external I/O pins or any other DUART function, reset the chip by setting, then clearing port 5, pin 5 (XP5_5).

The following bi-directional pins are defined as assignable variables/SFRs:

XP1_0

XP1_1

XP1_2

XP1_3

XP1_4

XP1_5

XP1_6

XP1_7

XP3_4

XP3_5

XP4_0

XP4_1

XP4_2

XP4_3

XP4_4

XP4_5

XP4_6

XP4_7

XP5_0

XP5_1

XP5_2

XP5_3

XP5_4

XP5_5

XP5_6

XP5_7

Each of the above also has a related constant Pn_m, which has been defined as a char equal to the address of XPn_m.

The following output-only pins are defined (as char constants only):

OP2

OP3

OP4

The following input-only pins are defined (as char constants only):

IP2

IP3

IP6

The following bi-directional ports are defined (as assignable variables/SFRs), in addition to the standard 8051 ports:

P4

P5

