Descriptions and use for the standardized EMAC board LCD drivers, 12/28/98.

In order to ease the programming of various EMAC SBCs, standardized LCD drivers have been written which have similar function and identical syntax on each board. Though each code file is board-specific, a user program may call these functions in the same manner on any EMAC SBC, thus increasing code portability and freeing the user to worry about his or her application instead of the hardware-specific intricacies of a particular SBC. It should be noted that these drivers can generate a considerable amount of code. It is therefore recommended that the user comment the driver functions not needed out of the lcddrv.c file, to save space for user code. Before attempting to compile the drivers, look through the header (lcddrv.h) file, and change any definitions you may need to, including the number of lines on your display, the size of the characters (font), and the compiler you are using.

The LCD functions are as follows:

char Init_LCD(char disp_mode, char display, char cursor)

This function initializes the LCD display by setting all characters to the space character ‘ ‘, zeroing any display shift, and moving the cursor to row 1, column 0. The parameter “disp_mode” determines whether the cursor (CURSOR) or the entire display (SHIFT) is shifted when the character pointer is incremented or decremented, and whether the character pointer is incremented (FORWARD) or decremented (REVERSE) after a character read or write operation. The two parameters should be OR’d together. For example, “FORWARD|CURSOR” would be a legal value for “disp_mode”. “CURSOR|REVERSE” is the default for this parameter, and these values will be overridden by SHIFT and REVERSE , respectively, if they are accidentally specified in the same value.

The “display” parameter determines whether or not the LCD display is activated. When deactivated, character memory is not affected, but no display is visible. Any characters in memory may be immediately shown by activating the display. Legal values for “display” are ON and OFF (or non-zero and 0, respectively).

The “cursor” parameter determines whether or not the cursor will be shown, and whether or not the cursor’s blink mode is activated. Legal values for this parameter are ON and OFF. These values may be OR’d with the value BLINK to activate the blink mode. If BLINK is not specified, blink mode will be deactivated (even if already active). Note that this parameter only affects the visibility of the cursor – the functionality is not altered.

Note that due to the slow internal clock speed f the LCD, this function may execute relatively slowly, as one LCD command must complete before the next one may be sent. This function returns a 0 on success.

char LCD_Mode(char disp_mode)

This function sets the cursor/shift mode and direction of shift as per the “disp_mode” parameter in the Init_LCD() function. Legal values for “disp_mode” are CURSOR or SHIFT, OR’d with FORWARD or REVERSE, as above. This function returns a 0 on success.

char LCD_Display(char display, char cursor)

This parameter sets the display on or off, and the character of the cursor as per the “display” and “cursor” in the Init_LCD() function. The “display” parameter determines whether or not the LCD display is activated. When deactivated, character memory is not affected, but no display is visible. Any characters in memory may be immediately shown by activating the display. Acceptable values for “display” are ON and OFF (or 1 and 0, respectively).

The “cursor” parameter determines whether or not the cursor will be shown, and whether or not the cursor’s blink mode is activated. Legal values for this parameter are ON and OFF. These values may be OR’d with the value BLINK to activate the blink mode. If BLINK is not specified, blink mode will be deactivated (even if already active). Note that this parameter only affects the visibility of the cursor – the functionality is not altered. This function returns a 0 on success.

int LCD_Getpos(void)

This function determines the current position of the cursor and returns an integer containing the data. The upper byte of the return value contains the current row of the cursor, while the lower byte contains the column value. Note that the top row of any display is row 1, while the leftmost column is column 0.

char LCD_Setpos(char row, char column)

This function sets the character pointer (cursor) position to row “row” and column “column”. As above, the top row of any display is row 1, while the leftmost column is column 0. Note that for 1 and 2 line displays, not all valid character memory locations are visible at once. See the LCD display’s documentation for details. This function returns a 0 on success.

char LCD_Home(char clear)

This function returns the character pointer (cursor) to row 1, column 0. Optionally, it may also clear the entire character memory, if the value of “enable” is YES (non-zero). This function returns 0 on success.

char LCD_Putchar(char chardata)

This function displays a character “chardata” at the current location of the character pointer (cursor), and increments/decrements the character pointer depending on the display mode (this will move the cursor or the display left or right.) In addition to the modified ASCII character set listed in your LCD documentation, this function recognizes the following standard C-language control characters:

\b

Backspace

\n

Newline (Linefeed)

\r

Carriage return

\t

Tab (3 spaces)

The following control characters have also been defined, but differently than their standard C-language meanings:

\a

Reverse backspace

\v

Reverse carriage return

These last two control characters are designed to be used when the LCD is in reverse mode, writing from right to left. Reverse backspace will move the cursor one space to the right and erase the character there, while reverse carriage return will move the cursor to the rightmost character of the currently line (which may or may not be displayed, depending on screen shifting). Tab and linefeed will work as expected in either forward or reverse mode.

This function returns a 0 on success.

char LCD_Getchar(void)

This function returns the character at the current location of the character pointer (cursor). Note that this will increment/decrement (depending on the display mode) the character pointer location, just as if a character had been written.

char LCD_CDShift(char shiftype)

This function either moves the cursor of shifts the display to the left or right, depending on the parameter “shiftype”. Two values must be specified for this parameter, OR’d together. Legal values are CURSOR or SHIFT, OR’d with FORWARD or REVERSE. SHIFT will cause the entire display to be shifted in the specified direction; the cursor will be shifted as well. CURSOR will move only the cursor in the specified direction. Character memory will not be altered under any circumstances. This function returns a 0 on success.

char LCD_Busy(void)

This function polls the LCD controller and returns a 0 if the controller is ready to accept an instruction, and non-zero if the controller is busy.

char LCD_Putstr(char *strdata)

This function will display the string pointed to by “*strdata” (equivalent to strdata[]). This must be a standard C-language definition string, an array of characters terminated by a null character (‘\0’). Unterminated strings can cause infinite loops and other unpredictable results. This function understands the same control characters as the LCD_Putstr() function. Note that this function does not perform any sort of length checking of the string; strings which extend beyond the screen may be stored in off-screen character memory and not displayed, or wrapped around to other lines (not necessarily the next line down), depending on the number of lines in your display. This function returns 0 on success.

char LCD_Backlight(char enable)

This function turns the LCD display backlight on or off, depending on the value of the parameter “enable.” Legal values for this parameter are ON and OFF (non-zero and 0, respectively). This function returns 0 on success.

Notes: Due to the slow internal LCD controller bus speed, each of the above functions may take a relatively long time to execute, up to several hundred milliseconds for some. Due to the use of Memory-Mapped I/O (MMIO) to access the LCD controller, parts of these functions must be performed atomically, with all interrupts disabled. This can add significant latency to interrupt response time. It is therefore recommended that user code call these functions so as to minimize the affect this latency might have. It should also be noted, however, that interrupts are not disabled for the entire execution time of these functions; hundreds of milliseconds of latency will not occur.

Return error conditions:

Value

Error [functions valid for]

0xFE

Invalid column [LCD_Setpos()]

0xFF

Invalid row [LCD_Setpos()]

Hardware-specific notes on the standardized LCD drivers for the uP535:

The LCD backlight is controlled by an output of the SC26C92 DUART chip. If you do not have the optional serial ports, you do not have this chip, and this function will not work. It may be possible to control this function through custom user hardware, but this would also require re-writing the LCD_Backlight function to suit the hardware you add.

