Descriptions and use for the standardized EMAC board keypad drivers, 12/28/98.

In order to ease the programming of various EMAC SBCs, standardized keypad drivers have been written which have similar function and identical syntax on each board. Though each code file is board-specific, a user program may call these functions in the same manner on any EMAC SBC, thus increasing code portability and freeing the user to worry about his or her application instead of the hardware-specific intricacies of a particular SBC. It should be noted that these drivers can generate a considerable amount of code. It is therefore recommended that the user comment the driver functions not needed out of the keydrv.c file, to save space for user code. Before attempting to compile the drivers, look through the header (keydrv.h) file, and change any definitions you may need to, including the ports on your board, and the compiler you are using.

The keypad functions are as follows:

char Keypad_Init(void)

This function performs all initialization necessary to use they keypad with your board, including processor I/O pins and coprocessor initialization where necessary. This function requires no parameters, and should be called by user code before any other keyboard driver function is used. The function will return a 0 on success.

 char K_Block_Read(void)

This function blocks until a key is pressed, then returns the value read from the keypad. Check your EMAC board manual for the meaning of the return values.

char K_Key_Pressed(void)

This function will return TRUE (non-zero) if a key has been pressed since the last key was read (by either K_Read_Key() or K_Block_Read()), whether that key is still being pressed or not. Note that this function does not clear the “key pressed” flag. This function may be used to poll until a key is pressed.

char K_Read_Key(void)

This function will read whatever value the keypad currently holds, whether a key is pressed or not. It is recommended that this function be called only after polling for a keypress with the K_Key_Pressed() function, or from an interrupt service routine triggered by the keypad interrupt. If no key is being pressed, the return value of this function is indeterminate, though it may appear to be a legal value.

char K_Config_INT(char enable)

This function enables or disables the keypad interrupt depending on the value of the parameter “enable”. Legal values for this parameter are ENABLE and DISABLE, as defined in the header file. If “enable” is true (ENABLE), the key pad interrupt and global interrupts will be enabled, after any pending keypad interrupt request flag is cleared. If “enable” is false (DISABLE), then the keypad interrupt will be disabled and the keypad interrupt request flag will be cleared. Under no circumstances will this function disable global interrupts. This function returns a 0 on success.

Return error conditions:

Value

Error [functions valid for]

none currently defined

Hardware-specific notes on the standardized keypad drivers for the uP535:

The uP535 uses direct polling to determine which key is being pressed. Thus, a key can only be read while it is being pressed; there is no queue in which keystrokes wait to be read.

The keypad interrupt is external interrupt 1 (EX1). The initialization function disables this interrupt, but sets it as level-triggered. The K_Key_Pressed() function uses the EX1 interrupt request flag to poll for a keypress. Both read functions clear this flag.

If a keypad whose connector has less than nine leads is used, the connector should be aligned with pin 9 of the uP535 connector, and not pin 1. Thus, if a keypad with an 8-pin connector is used (such as a telephone-style keypad,) pin 1 of the keypad header should connect to pin 2 of the board’s header, and pin 8 of the keypad header should connect to pin 9 of the 535’s header. Thus, the upper left key will always return 0x00, and the rest of the keys will follow the table in the uP535 documentation accordingly.

If the K_Read_Key() function is called while no key is being pressed, it will usually return 0x00. Note that this is also the value returned when the upper left key is being pressed.

