Descriptions and use for the standardized EMAC board Analog-to-Digital drivers, 12/10/98.

In order to ease the programming of various EMAC SBCs, standardized ADC drivers have been written which have similar function and identical syntax on each board. Though each code file is board-specific, a user program may call these functions in the same manner on any EMAC SBC, thus increasing the user’s code portability and freeing the user to worry about his or her application instead of the hardware-specific intricacies of a particular SBC. It should be noted that these drivers can generate a considerable amount of code. It is therefore recommended that the user comment the driver functions not needed out of the adcdrv.c file, to save space for user code. Before attempting to compile the drivers, look through the header (.h) file, and change any definitions you may need to, including the number of channels your board has available, and the compiler you are using.

The A to D functions are as follows:

int AtoD_Convert(char channel, char res_mode)

This function sets up and begins an analog-to-digital conversion on the specified channel, then blocks until the conversion is complete. Acceptable values for the “mode” parameter are: HI_RES, LO_RES. The HI_RES mode will perform a conversion using a precision of as many bits as are available on a particular board. The LO_RES mode will use the fewest. Check the hardware-specific sections of this file for information on your particular board. Note that higher precision will generally take longer to calculate. This function will also clear the new data / interrupt request flag for the A to D converter, and halt and discard any conversion previously in progress. Upon successful completion, this function will return the converted value.

char AtoD_Begin(char channel, char ad_mode)

This function sets up and begins a (low-resolution) A to D conversion on the specified channel, but does not wait for the conversion to finish before returning. The user may then check the status of the conversion via the AtoD_Finished() function, and read the calculated value via the AtoD_Read() function. Valid arguments for the “ad_mode” parameter are: ONCE, CONTINOUS. Passing ONCE as the “ad_mode” will cause the A to D converter to begin a single conversion, halting when finished, and setting the new data / interrupt request flag. The value CONTINOUS will set the converter to continuous mode, beginning a new conversion as soon as the previous one is completed. These conversions will be in the default mode, usually LO_RES. It should be noted that some boards do not generate hardware interrupts or set the new data flag when continuous mode -- see the hardware-specific portions of this file for more information. CONTINOUS mode may be halted by running AtoD_Convert(), AtoD_Begin with ONCE as the ad_mode, or manually. This function returns 0 on success.

char AtoD_Finished(void)

This function checks the status of the A to D conversion currently in progress. Upon success, this function will return a 1 if the conversion is finished, and a 0 if the calculation is still in progress.

int AtoD_Read(void)

This function reads the last value calculated by the A to D converter. As values from all channels are stored in the same register upon completion, data from any channel may be read via this function. Values may be read at any time, but it is recommended that A to D data be read before starting another conversion. This function will also clear the new data / interrupt request flag for the A to D converter. Upon success, this function will return the last converted value.

char AtoD_Int_Enable(char enable)

This function enables or disables the A to D interrupt. Note that the functions clears pending A to D interrupts before enabling them. Also note that while this function will enable global interrupts when necessary, it will never disable global interrupts. Even if the A to D interrupt is disabled and no other interrupt source is enabled, global interrupts will remain enabled. This function will return 0 on success.

Notes: While the hardware A to D converter has several channels, it has only one actual converter to calculate digital values from analog ones. Thus, the functions to begin conversion require a channel as a parameter, but the functions which work directly on the converter do not. This also means that two conversions cannot be run simultaneously. Beginning a conversion on a second channel before a previous conversion is completed will halt any conversion already in progress.

When switching channels, the hardware generally needs a few microseconds for the analog voltage to settle before beginning a conversion. The AtoD_Convert() and AtoD_Begin() functions will automatically add this wait where necessary. Keep in mind that this may add additional time to a conversion process. See the hardware-specific portion of this file for the delays on your hardware.00

Return error conditions:

Value

Error [functions valid for]

0xFF

Invalid channel specified [AtoD_Begin]

0xFFFF

Invalid channel specified [AtoD_Convert(), AtoD_Read()]

Hardware-specific notes on the standardized serial drivers for the uP535:

A to D Convert: Low resolution mode for the uP535 is 8 bits. High res. mode is 10 bits, and requires two conversion cycles (approx. 18 usec. each.) This function will halt any conversion already in progress.

A to D Begin: This function will halt any conversion already in progress. As the uP535 HI_RES mode is accomplished through software, CONTINOUS mode conversions will be 8-bit. The uP535 processor does not generate hardware interrupts or set the new data / interrupt request flag when in continuous mode. AtoD_Finished() will always return false when the A to D converter is in this mode.

A to D Read: This function may be used to read 8-bit data as many times as desired until the end of a new conversion. It may not be used to read 10-bit data.

A to D Interrupt Enable: It should be noted that while the hardware sets the new data / A to D interrupt request flag at the end of a conversion, the flag is not automatically cleared when the processor vectors to the interrupt service routine. User software should clear this flag immediately upon interrupt to prevent continuous interrupting.

Channel switch time delay: The sample time for the uP535 is part of the conversion time. No additional delays are generated by switching channels.

Notes: The data from a previous A to D conversion is valid until the next conversion is completed. Thus, you may wish to wait on AtoD_Finished() to start a new conversion, then read the data from a previous conversion while the new data is computed, if your code can execute that quickly.

The uP535 has a special feature by which internal reference voltages may set by the user, allowing greater resolution in an 8-bit conversion. This feature is used by the HI_RES mode for this board, setting voltage references according to a first 8-bit conversion, then taking a second conversion with the internal reference voltages programmed to the minimum allowable interval. As the programmable reference voltage feature is uncommon (unique) among EMAC SBCs, it is unsupported by these drivers. Users wishing to utilize this function should check the SAB 80535 User’s manual for more information. The AtoD_Read(), AtoD_Finished(), and AtoD_Int_Enable() functions will still function normally with this feature.

