. 2390 EMAC, Way
= I L Inl: Carbondale, 1L 62902
. s Phone: (618) 529-4525

EQUIPMENT MONITOR AND CONTROL Fax: (618) 457-0110

http://www.emacinc.com

Debugging Applications on EMAC ARM Open-Embedded

This document describes the process of debugging applications on EMAC's ARM Open Embedded build version 1.2 and
higher using EMAC's Eclipse distribution version 3.3 and GDB. This release of EMAC OE uses the dropbear SSH server,
which is not capable of using the Remote Services Explorer automated download and execute feature in Eclipse. Future
versions of EMAC OE will include an OpenSSH server with SFTP enabled, allowing this functionality to work.

To begin, a valid executable will be needed for debugging. Also insure that the -g option is passed to GCC in the Makefile to
ensure that debugging symbols are built into the executable. For demonstration the “hello” example project for the IPAC-
9302 was modified as follows:

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

/*

*hello world
*/

int main()

{
inti=0;

printf("hello IPAC9302\n");
printf("This is a test\n™);
printf("Try it out!"\n™);

if (i)

printf("i is true\n");
else

printf("i is false\n");
return 0;

}
Listing 1: Modified Hello.c Code

After compiling the hello project, it will need to be transferred to the board for testing. To do this, first modify the
TARGET _IP variable in the Makefile to match the IP address of the board. Next, use the upload make target to transfer the
file to the board via FTP. By default, the executable will be transferred to /tmp on the board.

Next, open a terminal connection to the board either through a separate console or through the Terminal view in Eclipse. To
access the terminal view through Eclipse, go to Window-> Show View-> Other-> Terminal-> Terminal. This will open a new
view in the bottom of the window called terminal. Initialize a new SSH connection as shown below by clicking on the green
connection settings button on the terminal view. Note that this process is described in detail in the “Linux Development
Using Eclipse” manual.

1

This document is the property of EMAC, Inc. Copyright 2008. Unauthorized duplication is strictly forbidden.
Engineering Department Debugging_on_EMAC_ARM_OE.doc 2/2/2009

- C/C+4 - IPACI302-0F_SDK-1.1 eabj/projects/hello/Makefile - Eclipse SDK

File Edit Refactor Navigate Search Project Run Window Help
|f‘j'§;iﬁ @|@.§3.@.@».i@.§v!@.$v°.%.|@ @@,@a|§€}§§;}gig§|!§§.gg.@@v®v Ef&,’]ava
Ej Project Explorer 53 ! i -@ helloc || & Makefile E = 0[5 outl | © Mak 2 e
~ SURBASES. . /. ./ - 2 |
BE ¥ CROS5=% (SDKBASE)gcc-4.1.1-arm-1inux-gnueabi/bin/arm-linux-gnueabi- E‘ R RO
- . CC=$(CROSS)gcc T
= 15 IPAC9302-DE SDK-1.1.eabi WPUT=wput --reupload --dont-continue = 5IPACO302-0F SDK-11ea
b ¥ Binaries b (=gcc-4.1.1-arm-linux-gr
b H Archives ;3:;;32:;“1: = [=projects
b HlIncludes E=egpc
CFLAGS=-MMD -
b [=gce-4.11-arm-linux-gnueabi OFLAGS=-WL d ~ (Zhello
Bi) TARGET=hello
P =egpc CFILES=hello.c £ Terminal Settings @ clean
= hello & upload
& O0B1S=§ (CFILES:.c=.0) “View Settings:—————————————— @ . ;
> el hello.c DEPS=§ (0BJS : .0=.d)) - (= spi_test
b Fhello - [arm/le] (= sst25vf020
b [afhello.o - [arm/e] all: $(TARGET) -Connection Type:
B Malcerile $(TARGET): $(CBJS) Makefile (55t z)
Dhellud $(CC) $(VERBOSE) $(0BIS) % (OH 2 GET)
b T rsettings———————
&spites objects: ${CFILES)
b (= sst25vf020 $(cC) $(VERBOSE) $(CFLAGS) -¢ff | HOst: 20.0,2.103
@ egpc.igz ¥ ean; User root
@ sst25vf020.tgz $(RM) *.0 #.gdb $(TARGET) $(0f | piccword:
Timeout {sec): |0
%.00 %.C
$(CC) $(CFLAGS) -0 $@ -c §< Port: 22
TARGET_IP=10.0.2.163
LOGIN=root
PASSWORD=emac_inc oK H cancel }
upload: all
$(WPUT) $(TARGET) ftp:/s$(LOGIN}:$(PASSWORD)@ (TARGET IP)/../../tmp/§ (TARGET})
-include §(DEPS) (-
[l [«]+] [« | e
[Zi Problems | ¢ Tasks & Console | =1 Properties |9 83\ =]
No Connection Selected B e
(1] | ({2 3
i ukd No Connection Selected J |i | D »

Figure 1: New Terminal Connection

Next, run the application to test that it is working correctly. Use the following commands to navigate to /tmp, make the
application executable, and run the application:

hello
This
Try it out!!
i is false

root@IPAC9302:~# cd /tmp

root@IPAC9302:/var/volatile/tmp# chmod +x hello

root@I1PAC9302:/var/volatile/tmp# _/hello
1PAC9302

is a test

Listina 2: Commands for Executina Annolication

After testing the application, start GDBserver on the board as shown below. Note that this is described in detail in the “Linux
Development Using Eclipse” manual. The example below starts GDBserver listening on port 2828 from any IP address.

2

This document is the property of EMAC, Inc. Copyright 2008. Unauthorized duplication is strictly forbidden.
Debugging_on_EMAC_ARM_OE.doc

Engineering Department

2/2/2009

root@IPAC9302:/var/volatile/tmp# gdbserver :2828 _./hello
Process ./hello created; pid = 1043
Listening on port 2828

Listina 3: Startina GDBServer

Next, use Eclipse to connect to the running GDBserver application and debug the application.
1. Right click on the hello binary file in the Project Explorer view and select Debug As-> Open Debug Dialog...
2. Select C/C++ Local Application on the left and press the New button to create a new configuration.
3. Onthe Debugger tab, change Debugger to gdbserver Debugger.
4. Under Debugger Options, change the GDB debugger to the arm-linux-gnueabi-gdb application in the SDK. This is
located under the gcc-<version>/bin directory in the SDK.

Create, manage, and run configurations

BB X B %

Name: [hello |

[type filter text]

Main | &= Arguments | Bg Environment | % Debugger B Source | = Common | b

[E1C/CH++ Attach to Loc[4] =

< [ElC/C++ Local Applicz Debugger: | gdbserver Debugger b I
@ hello (% Stop on startup at: [main H Advanced... l
[E1C/C++ Postmortem _
rDebugger Options

[C]c/C++ Remote Appl

[E]DSF C/C++ Local Ap Main[Shared Libraries | Ccnnech’on]

©Eclipse Application GDB debugger: [fh0meftravi5Ipr0jectsfarmfipac9302fn] | Browse... l

& HTTP Preview i

GDB command file: | H Browse. .. l
= Java Applet
g {Warning: Some commands in this file may interfere with the startup operation of
(7] Java Application the debugger, for example "run".)
Ju JUnit
)) GDB command set: [Standard ¥

Jii JUnit Plug-in Test

“ 0OSGi Framework Eeosabal tialT

[®] PHP Script [| verbose console mode 3

5 PHP Web Page L

[Z Remote Java Applic;E ’;

i ———— &
Filter matched 17 of 17 items
@ | Debug] | Close]

Figure 2: Debug Configuration Settings

5. Add a search path for the shared libraries in the SDK as shown below. This is located in the gcc-<version>/arm-
linux-gnueabi/lib directory of the SDK.

3

This document is the property of EMAC, Inc. Copyright 2008. Unauthorized duplication is strictly forbidden.
Engineering Department Debugging_on_EMAC_ARM_OE.doc 2/2/2009

Engineering Department

2 Debug

Create, manage, and run configurations

C @ x| 8%

Name: [hello

[type filter text]

[T1C/C++ Attach to Loc/=

2 Main rM= Arguments | g Environment | % Debugger . % Source | = Common

Debugger: | gdbserver Debugger

z

= [C]C/C++ Local Applic:

[%] Stop on startup at: [main ” Advanced... J

[€]C/C++ Postmortem .
-Debugger Options

[E]C/C++ Remote Appl

[E]DSF C/C++ Local Ap Main | Shared Libraries| Connection

Ji JUnit Plug-in Test
4% 0SGi Framework

& Eclipse Application Directories:

£ HTTP Preview E SDK-1.2 eabifgcc-4.1.1-arm-linux-gnueabi/arm-linux-gnueabi/lib
il Java Applet

31 Java Application

Ju JUnit

Remove
Select From List

7] PHP Script (@ | oD
& PHP Web Page 1 [Load shared library symbols automatically =
[Z Remote Java AppIiCiZ [| Stop on shared library events :
B e — e omam =3
P s | |
Filter matched 17 of 17 items
@ [Debug] l Close]

Figure 3: Shared Library Search Path

6. Set the Connection settings to match those of the board. Set the connection type to TCP and enter the IP address of

the board and the port number of the running GDBserver as shown below.

4

This document is the property of EMAC, Inc. Copyright 2008. Unauthorized duplication is strictly forbidden.

Debugging_on_EMAC_ARM_OE.doc

2/2/2009

Create, manage, and run configurations

B

Ly

B X D3

[type filter text]

-

[T1C/C++ Attach to Loc/=

[E]C/C++ Local Applic:

= hello

[E]C/C++ Postmortem
[E]C/C++ Remote Appl
[E]DSF C/C++ Local Ap
& Eclipse Application
ﬁ HTTP Preview

#i] Java Applet

31 Java Application

Ju JUnit

Ji JUnit Plug-in Test

% 0SGi Framework
[®|PHP Script

& PHP Web Page

[Z Remote Java Applic:

-
—

Name: [hello

2 Main rM= Arguments | B§ Environment lﬁ.ﬁ Debugger - E: Source| = Common

Debugger: | gdbserver Debugger

z

¥ Stop on startup at: [main ” Advanced... J

-Debugger Options

[Majn | Shared Libraries H Ccnnectionl

Type: | TCP hd

Host name or IP address: [10.0.2.153]

Port number:

[4

Filter matched 17 of 17 item:s i
@ l Debug] l Close]

Figure 4: GDB Connection Settings

7.
8.
9

10.

Click on Apply followed by Debug.
When prompted to switch to the Debug perspective, select Remember my decision and click Yes.
Eclipse will automatically open the source, highlighting the current position in the code. The different views in the
Eclipse debug perspective provide many different tools for debugging and examining the application.
Set a breakpoint at a certain line in the code by double-clicking on the margin to the left of the line. A breakpoint is
set on the first printf() call in the example below.

This document is the property of EMAC, Inc. Copyright 2008. Unauthorized duplication is strictly forbidden.
Engineering Department

5

Debugging_on_EMAC_ARM_OE.doc

2/2/2009

| = Debug)- IPACS302-0F SDK:-1.1.eabi/projects/hello/hello.c - Eclipse SDK

File Edit Refactor MNavigate Search Project Run Window Help

- B & @ 0-Q & ®c 4|0 |3 & §l w6 -

=
| %5 Debug 82 4 Serversl = O (0= variables 32 "% Breakpoints | 41 Registersl 1= Modu\esl

Bechoe m B BB BET

+ [clhello [C/C++ Local Application] Name ‘\n’aiue

= §# gdbserver Debugger (2/2/09 3:27 PM) (Suspended) =i 1]
= 4@ Thread [1] (Suspended)

= 1 main{} fhome/travis/projects/arm/ipac9302/IPACS302-0E_SDK-1.1.eabi/projects/hello/hel

5 /homeytravis/projects/arm/ipac9302/new/IPACI 302-OF_SDK-1.2 eabi/gcc-4.1.1-arm-linux-gnuea
3 /homeytravis/projects/arm/ipac9302/IPAC9302-0E_SDK-1.1.eabi/projects/hellofhello (2/2/09 3:2

-

=

[+]}]

#FINclude <sTdio.h>]
#include <stdlib.h=

] % [Makefile |12 _start() 0x400008a0 = 8| outline 32

==

AR e ¥

#include <time.h= & string.h

/*hello world = stdioh
= stdlibh
o time h

@ main{) : int

int main ()

int 1 = 0;

printf("hello IPACI302\n");
printf("This is a test\n");
printf("Try it out!!\n");
if (1)

printfi("i is true\n");
else

printf("i is falsewn");
return 0;

(] i [+1¥]

|El console % aTasksl AR Prob\emsl‘ [F] Debug Dutput] Browser Output" a Memoryl

|

hello [C/C4++ Local Application] /homejtravis/projects/arm/ipac9302/IPACI302-0E_SDK-1 1 eabi/projects/hello/hello (2/2/09 3:27 PM) % % B Rd [E{]—g—j{] = Er v

e

Jne} Writable SmartInsert | 28:3 I

[R 5% <%

11. Press the “Resume” button on the Debug view at the top of the Window to continue to the next breakpoint. The
instruction stepping mode can be used to step through the code instruction by instruction and display the application

disassembly. Use the “Step” buttons to single step through the application.
12. Switch back to the C/C++ perspective using the arrows at the top right of the window.

6

This document is the property of EMAC, Inc. Copyright 2008. Unauthorized duplication is strictly forbidden.
Engineering Department Debugging_on_EMAC_ARM_OE.doc

2/2/2009

